cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A265901 Square array read by descending antidiagonals: A(n,1) = A188163(n), and for k > 1, A(n,k) = A087686(1+A(n,k-1)).

Original entry on oeis.org

1, 2, 3, 4, 7, 5, 8, 15, 12, 6, 16, 31, 27, 14, 9, 32, 63, 58, 30, 21, 10, 64, 127, 121, 62, 48, 24, 11, 128, 255, 248, 126, 106, 54, 26, 13, 256, 511, 503, 254, 227, 116, 57, 29, 17, 512, 1023, 1014, 510, 475, 242, 120, 61, 38, 18, 1024, 2047, 2037, 1022, 978, 496, 247, 125, 86, 42, 19, 2048, 4095, 4084, 2046, 1992, 1006, 502, 253, 192, 96, 45, 20
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Comments

Square array read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
The topmost row (row 1) of the array is A000079 (powers of 2), and in general each row 2^k contains the sequence (2^n - k), starting from the term (2^(k+1) - k). This follows from the properties (3) and (4) of A004001 given on page 227 of Kubo & Vakil paper (page 3 in PDF).
Moreover, each row 2^k - 1 (for k >= 2) contains the sequence 2^n - n - (k-2), starting from the term (2^(k+1) - (2k-1)). To see why this holds, consider the definitions of sequences A162598 and A265332, the latter which also illustrates how the frequency counts Q_n for A004001 are recursively constructed (in the Kubo & Vakil paper).

Examples

			The top left corner of the array:
   1,  2,   4,   8,  16,   32,   64,  128,  256,   512,  1024, ...
   3,  7,  15,  31,  63,  127,  255,  511, 1023,  2047,  4095, ...
   5, 12,  27,  58, 121,  248,  503, 1014, 2037,  4084,  8179, ...
   6, 14,  30,  62, 126,  254,  510, 1022, 2046,  4094,  8190, ...
   9, 21,  48, 106, 227,  475,  978, 1992, 4029,  8113, 16292, ...
  10, 24,  54, 116, 242,  496, 1006, 2028, 4074,  8168, 16358, ...
  11, 26,  57, 120, 247,  502, 1013, 2036, 4083,  8178, 16369, ...
  13, 29,  61, 125, 253,  509, 1021, 2045, 4093,  8189, 16381, ...
  17, 38,  86, 192, 419,  894, 1872, 3864, 7893, 16006, 32298, ...
  18, 42,  96, 212, 454,  950, 1956, 3984, 8058, 16226, 32584, ...
  19, 45, 102, 222, 469,  971, 1984, 4020, 8103, 16281, 32650, ...
  20, 47, 105, 226, 474,  977, 1991, 4028, 8112, 16291, 32661, ...
  22, 51, 112, 237, 490,  999, 2020, 4065, 8158, 16347, 32728, ...
  23, 53, 115, 241, 495, 1005, 2027, 4073, 8167, 16357, 32739, ...
  25, 56, 119, 246, 501, 1012, 2035, 4082, 8177, 16368, 32751, ...
  28, 60, 124, 252, 508, 1020, 2044, 4092, 8188, 16380, 32764, ...
  ...
		

Crossrefs

Inverse permutation: A267102.
Transpose: A265903.
Cf. A265900 (main diagonal).
Cf. A162598 (row index of n in array), A265332 (column index of n in array).
Column 1: A188163.
Column 2: A266109.
Row 1: A000079 (2^n).
Row 2: A000225 (2^n - 1, from 3 onward).
Row 3: A000325 (2^n - n, from 5 onward).
Row 4: A000918 (2^n - 2, from 6 onward).
Row 5: A084634 (?, from 9 onward).
Row 6: A132732 (2^n - 2n + 2, from 10 onward).
Row 7: A000295 (2^n - n - 1, from 11 onward).
Row 8: A036563 (2^n - 3).
Row 9: A084635 (?, from 17 onward).
Row 12: A048492 (?, from 20 onward).
Row 13: A249453 (?, from 22 onward).
Row 14: A183155 (2^n - 2n + 1, from 23 onward. Cf. also A244331).
Row 15: A000247 (2^n - n - 2, from 25 onward).
Row 16: A028399 (2^n - 4).
Cf. also permutations A267111, A267112.

Programs

Formula

For the first column k=1, A(n,1) = A188163(n), for columns k > 1, A(n,k) = A087686(1+A(n,k-1)).

A132731 Triangle T(n,k) = 2 * binomial(n,k) - 2 with T(n,0) = T(n,n) = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 10, 6, 1, 1, 8, 18, 18, 8, 1, 1, 10, 28, 38, 28, 10, 1, 1, 12, 40, 68, 68, 40, 12, 1, 1, 14, 54, 110, 138, 110, 54, 14, 1, 1, 16, 70, 166, 250, 250, 166, 70, 16, 1, 1, 18, 88, 238, 418, 502, 418, 238, 88, 18, 1
Offset: 0

Views

Author

Gary W. Adamson, Aug 26 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  1,  1;
  1,  2,  1;
  1,  4,  4,  1;
  1,  6, 10,  6,  1;
  1,  8, 18, 18,  8,  1;
  1, 10, 28, 38, 28, 10,  1;
  1, 12, 40, 68, 68, 40, 12, 1;
  ...
		

Crossrefs

Cf. A000012, A007318, A103451, A132044, A132732 (row sums).

Programs

  • Magma
    T:= func< n,k | k eq 0 or k eq n select 1 else 2*Binomial(n,k) - 2 >;
    [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel, Feb 14 2021
  • Mathematica
    T[n_, k_]:= If[k==0 || k==n, 1, 2*Binomial[n, k] - 2];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 14 2021 *)
  • PARI
    t(n,k) =  2*binomial(n, k) + ((k==0) || (k==n)) - 2*(k<=n); \\ Michel Marcus, Feb 12 2014
    
  • Sage
    def T(n, k): return 1 if (k==0 or k==n) else 2*binomial(n, k) - 2
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 14 2021
    

Formula

T(n, k) = 2*A007318 + A103451 - 2*A000012, an infinite lower triangular matrix.
From G. C. Greubel, Feb 14 2021: (Start)
T(n, k) = 2*binomial(n, k) - 2 with T(n, 0) = T(n, n) = 1.
T(n, k) = 2*A132044(n, k) with T(n, 0) = T(n, n) = 1.
Sum_{k=0..n} T(n, k) = 2^(n+1) - 2*n - [n=0] = A132732(n). (End)

Extensions

Corrected by Jeremy Gardiner, Feb 02 2014
More terms from Michel Marcus, Feb 12 2014

A132824 Row sums of triangle A132823.

Original entry on oeis.org

1, 2, 2, 4, 10, 24, 54, 116, 242, 496, 1006, 2028, 4074, 8168, 16358, 32740, 65506, 131040, 262110, 524252, 1048538, 2097112, 4194262, 8388564, 16777170, 33554384, 67108814, 134217676, 268435402, 536870856, 1073741766, 2147483588, 4294967234, 8589934528
Offset: 0

Views

Author

Gary W. Adamson, Sep 02 2007

Keywords

Examples

			a(4) = 10 = sum of row 4 terms of triangle A132823: (1 + 2 + 4 + 2 + 1).
a(3) = 4 = (1, 3, 3, 1) dot (1, 1, -1, 3) = (1 + 3 -3 + 3).
		

Crossrefs

Essentially the same as A132732.

Programs

Formula

Binomial transform of [1, 1, -1, 3, -1, 3, -1, 3, -1, 3, ...].
For n > 0, a(n) = 2 + 2^n - 2*n = 1 + A183155(n-1). - R. J. Mathar, Apr 04 2012
From Colin Barker, Jun 06 2014: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3) for n > 3.
G.f.: -(4*x^3-x^2-2*x+1)/((x-1)^2*(2*x-1)). (End)
For n > 1, a(n) = A132732(n-1). - Jeppe Stig Nielsen, Dec 29 2017
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: exp(x)*(exp(x) - 2*(x - 1)) - 2.
a(n) = 2*A000325(n-1) for n >= 1. (End)
Showing 1-3 of 3 results.