cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A132728 Triangle T(n, k) = 4 - 3*(-1)^k, read by rows.

Original entry on oeis.org

1, 1, 7, 1, 7, 1, 1, 7, 1, 7, 1, 7, 1, 7, 1, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1
Offset: 0

Views

Author

Roger L. Bagula, Nov 17 2007

Keywords

Examples

			Triangle begins as:
  1;
  1, 7;
  1, 7, 1;
  1, 7, 1, 7;
  1, 7, 1, 7, 1;
  1, 7, 1, 7, 1, 7;
  1, 7, 1, 7, 1, 7, 1;
  1, 7, 1, 7, 1, 7, 1, 7;
  1, 7, 1, 7, 1, 7, 1, 7, 1;
  1, 7, 1, 7, 1, 7, 1, 7, 1, 7;
  1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1;
		

Crossrefs

Programs

  • Magma
    [4 -3*(-1)^k: k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 14 2021
  • Mathematica
    Table[PadRight[{},n,{1,7}],{n,20}]//Flatten (* Harvey P. Dale, Aug 02 2019 *)
    Table[4 -3*(-1)^k, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 14 2021 *)
  • Sage
    flatten([[4 -3*(-1)^k for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 14 2021
    

Formula

From G. C. Greubel, Feb 14 2021: (Start)
T(n, k) = 4 - 3*(-1)^k.
Sum_{k=0..n} T(n, k) = (8*n + 5 - 3*(-1)^n)/2 = A047393(n+2). (End)
Bivariate g.f.: (1 + 7*x*y)/((1 - x)*(1 - x*y)*(1 + x*y)). - J. Douglas Morrison, Jul 19 2021

Extensions

Edited and corrected by Joerg Arndt, Dec 26 2018
Offset and title changed by G. C. Greubel, Feb 14 2021
Showing 1-1 of 1 results.