A132747 a(n) = number of non-isolated divisors of n.
0, 2, 0, 2, 0, 3, 0, 2, 0, 2, 0, 4, 0, 2, 0, 2, 0, 3, 0, 4, 0, 2, 0, 4, 0, 2, 0, 2, 0, 5, 0, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 5, 0, 2, 0, 2, 0, 4, 0, 2, 0, 2, 0, 3, 0, 4, 0, 2, 0, 6, 0, 2, 0, 2, 0, 3, 0, 2, 0, 2, 0, 6, 0, 2, 0, 2, 0, 3, 0, 4, 0, 2, 0, 6, 0, 2, 0, 2, 0, 7, 0, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 3, 0, 2, 0
Offset: 1
Keywords
Examples
The positive divisors of 20 are 1,2,4,5,10,20. Of these, 1 and 2 are next to each other and 4 and 5 are next to each other. So a(20) = the number of these divisors, which is 4.
Links
- Ray Chandler, Table of n, a(n) for n=1..10000
Programs
-
Mathematica
Table[Length[Select[Divisors[n], If[ # > 1, IntegerQ[n/(#*(# - 1))]] || IntegerQ[n/(#*(# + 1))] &]], {n, 1, 90}] (* Stefan Steinerberger, Oct 26 2007 *)
-
PARI
a(n) = my(div = divisors(n)); sumdiv(n, d, vecsearch(div, d-1) || vecsearch(div, d+1)); \\ Michel Marcus, Aug 22 2014
Formula
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(2) + 1 = A002162 + 1 = 1.693147.... . - Amiram Eldar, Mar 22 2024
Extensions
More terms from Stefan Steinerberger, Oct 26 2007
Extended by Ray Chandler, Jun 24 2008
Comments