cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132747 a(n) = number of non-isolated divisors of n.

Original entry on oeis.org

0, 2, 0, 2, 0, 3, 0, 2, 0, 2, 0, 4, 0, 2, 0, 2, 0, 3, 0, 4, 0, 2, 0, 4, 0, 2, 0, 2, 0, 5, 0, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 5, 0, 2, 0, 2, 0, 4, 0, 2, 0, 2, 0, 3, 0, 4, 0, 2, 0, 6, 0, 2, 0, 2, 0, 3, 0, 2, 0, 2, 0, 6, 0, 2, 0, 2, 0, 3, 0, 4, 0, 2, 0, 6, 0, 2, 0, 2, 0, 7, 0, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 3, 0, 2, 0
Offset: 1

Views

Author

Leroy Quet, Aug 27 2007

Keywords

Comments

A divisor d of n is non-isolated if either d-1 or d+1 divides n. a(2n-1) = 0 for all n >= 1.

Examples

			The positive divisors of 20 are 1,2,4,5,10,20. Of these, 1 and 2 are next to each other and 4 and 5 are next to each other. So a(20) = the number of these divisors, which is 4.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Divisors[n], If[ # > 1, IntegerQ[n/(#*(# - 1))]] || IntegerQ[n/(#*(# + 1))] &]], {n, 1, 90}] (* Stefan Steinerberger, Oct 26 2007 *)
  • PARI
    a(n) = my(div = divisors(n)); sumdiv(n, d, vecsearch(div, d-1) || vecsearch(div, d+1)); \\ Michel Marcus, Aug 22 2014

Formula

a(n) = A000005(n) - A132881(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(2) + 1 = A002162 + 1 = 1.693147.... . - Amiram Eldar, Mar 22 2024

Extensions

More terms from Stefan Steinerberger, Oct 26 2007
Extended by Ray Chandler, Jun 24 2008