cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132753 a(n) = 2^(n+1) - n + 1.

Original entry on oeis.org

3, 4, 7, 14, 29, 60, 123, 250, 505, 1016, 2039, 4086, 8181, 16372, 32755, 65522, 131057, 262128, 524271, 1048558, 2097133, 4194284, 8388587, 16777194, 33554409, 67108840, 134217703, 268435430, 536870885, 1073741796, 2147483619
Offset: 0

Views

Author

Gary W. Adamson, Aug 28 2007

Keywords

Comments

Apart from a(0): Row sums of triangle A132752 (old name).
Apart from a(0): Binomial transform of [1, 3, 0, 4, 0, 4, 0, 4, ...].

Examples

			a(3) = 14 = sum of row 3 terms of triangle A132752: (3 + 5 + 5 + 1).
a(3) = 14 = (1, 3, 3, 1) dot (1, 3, 0, 4) = (1 + 9 + 0 + 4).
		

Crossrefs

Programs

  • Magma
    [2^(n+1) -n+1: n in [0..40]]; // G. C. Greubel, Feb 16 2021
  • Maple
    A132753:= n-> 2^(n+1) -n+1; seq(A132753(n), n=0..40) # G. C. Greubel, Feb 16 2021
  • Mathematica
    Table[2^(n+1) -n+1, {n, 0, 30}] (* Bruno Berselli, Aug 31 2013 *)
  • PARI
    a(n)=2^(n+1)-n+1
    
  • PARI
    Vec( (3-8*x+6*x^2)/((1-x)^2*(1-2*x)) + O(x^40)) \\ Colin Barker, Mar 14 2014
    
  • Sage
    [2^(n+1) -n+1 for n in (0..40)] # G. C. Greubel, Feb 16 2021
    

Formula

From Colin Barker, Mar 14 2014: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3).
G.f.: (3 - 8*x + 6*x^2)/((1-x)^2 * (1-2*x)). (End)
E.g.f.: (1-x)*exp(x) + 2*exp(2*x). - G. C. Greubel, Feb 16 2021

Extensions

More terms Vladimir Joseph Stephan Orlovsky, Dec 25 2008
Changed first member, and better name from Ralf Stephan, Aug 31 2013