cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132755 a(n) = n*(n + 25)/2.

Original entry on oeis.org

0, 13, 27, 42, 58, 75, 93, 112, 132, 153, 175, 198, 222, 247, 273, 300, 328, 357, 387, 418, 450, 483, 517, 552, 588, 625, 663, 702, 742, 783, 825, 868, 912, 957, 1003, 1050, 1098, 1147, 1197, 1248, 1300, 1353, 1407, 1462, 1518, 1575
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

Let f(n,i,a) = Sum_{k=0..n-i} (binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j)), then a(n) = -f(n, n-1, 13), for n>=1. - Milan Janjic, Dec 20 2008
a(n) = n + a(n-1) + 12 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(n) = 13*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(0)=0, a(1)=13, a(2)=27; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Aug 09 2014
From Amiram Eldar, Jan 10 2021: (Start)
Sum_{n>=1} 1/a(n) = 2*A001008(25)/(25*A002805(25)) = 34052522467/111546435000.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/25 - 19081066231/334639305000. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: x*(12*x - 13)/(x-1)^3.
E.g.f.: exp(x)*x*(26 + x)/2.
a(n) = A132767(n)/2. (End)