cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132756 a(n) = n*(n + 27)/2.

Original entry on oeis.org

0, 14, 29, 45, 62, 80, 99, 119, 140, 162, 185, 209, 234, 260, 287, 315, 344, 374, 405, 437, 470, 504, 539, 575, 612, 650, 689, 729, 770, 812, 855, 899, 944, 990, 1037, 1085, 1134, 1184, 1235, 1287, 1340, 1394, 1449, 1505, 1562, 1620
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n(n+27))/2,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,14,29},50] (* Harvey P. Dale, Apr 10 2022 *)
  • PARI
    a(n)=n*(n+27)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

Let f(n,i,a) = Sum_{k=0..n-i} (binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j)), then a(n) = -f(n,n-1,14), for n>=1. - Milan Janjic, Dec 20 2008
a(n) = n + a(n-1) + 13 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(n) = 14*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
From Chai Wah Wu, Jun 02 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: x*(13*x - 14)/(x - 1)^3. (End)
From Amiram Eldar, Jan 10 2021: (Start)
Sum_{n>=1} 1/a(n) = 2*A001008(27)/(27*A002805(27)) = 312536252003/1084231348200.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/27 - 57128792093/1084231348200. (End)
From Elmo R. Oliveira, Jan 12 2025: (Start)
E.g.f.: exp(x)*x*(28 + x)/2.
a(n) = A132769(n)/2. (End)