cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132757 a(n) = n*(n+29)/2.

Original entry on oeis.org

0, 15, 31, 48, 66, 85, 105, 126, 148, 171, 195, 220, 246, 273, 301, 330, 360, 391, 423, 456, 490, 525, 561, 598, 636, 675, 715, 756, 798, 841, 885, 930, 976, 1023, 1071, 1120, 1170, 1221, 1273, 1326, 1380, 1435, 1491, 1548, 1606, 1665
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

If we define f(n,i,a) = sum_{k=0..n-i} (binomial(n,k)*stirling1(n-k,i)*product_{j=0..k-1} (-a-j)), then a(n) = -f(n,n-1,15), for n >= 1. - Milan Janjic, Dec 20 2008
a(n) = n + a(n-1) + 14 with n > 0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Colin Barker, Mar 18 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(15-14*x)/(1-x)^3. (End)
a(n) = 15*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
From Amiram Eldar, Jan 11 2021: (Start)
Sum_{n>=1} 1/a(n) = 2*A001008(29)/(29*A002805(29)) = 9227046511387/33771798660600.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/29 - 236266661971/4824542665800. (End)
From Elmo R. Oliveira, Jan 12 2025: (Start)
E.g.f.: exp(x)*x*(30 + x)/2.
a(n) = A132771(n)/2. (End)