A132759 a(n) = n*(n+13).
0, 14, 30, 48, 68, 90, 114, 140, 168, 198, 230, 264, 300, 338, 378, 420, 464, 510, 558, 608, 660, 714, 770, 828, 888, 950, 1014, 1080, 1148, 1218, 1290, 1364, 1440, 1518, 1598, 1680, 1764, 1850, 1938, 2028, 2120, 2214, 2310, 2408
Offset: 0
Links
- Felix P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, Preprint on ResearchGate, March 2014.
- Eric Weisstein's World of Mathematics, Gear Graph.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
s=0;lst={s};Do[s+=n++ +14;AppendTo[lst, s], {n, 0, 7!, 2}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 19 2008 *) Table[n(n+13),{n,0,50}] (* Harvey P. Dale, Aug 22 2019 *)
-
PARI
a(n)=n*(n+13) \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = n*(n + 13) = 2*A056119(n).
a(n) = 2*n + a(n-1) + 12 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
G.f.: 2*x*(-7+6*x)/(x-1)^3. - R. J. Mathar, Jul 14 2012
Sum_{n>=1} 1/a(n) = 1145993/4684680 = 0.2446256... - R. J. Mathar, Jul 14 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/13 - 263111/4684680. - Amiram Eldar, Jan 15 2021
From Elmo R. Oliveira, Dec 12 2024: (Start)
E.g.f.: exp(x)*x*(14 + x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Comments