A132765 a(n) = n*(n + 23).
0, 24, 50, 78, 108, 140, 174, 210, 248, 288, 330, 374, 420, 468, 518, 570, 624, 680, 738, 798, 860, 924, 990, 1058, 1128, 1200, 1274, 1350, 1428, 1508, 1590, 1674, 1760, 1848, 1938, 2030, 2124, 2220, 2318, 2418, 2520, 2624, 2730, 2838, 2948, 3060, 3174, 3290, 3408
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Felix P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, ResearchGate, 2014.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Mathematica
Table[n (n + 23), {n, 0, 50}] (* Bruno Berselli, Sep 03 2018 *)
-
PARI
a(n)=n*(n+23) \\ Charles R Greathouse IV, Jun 17 2017
-
Sage
[n*(n+23) for n in (0..50)] # G. C. Greubel, Mar 14 2022
Formula
a(n) = n*(n + 23).
a(n) = 2*n + a(n-1) + 22 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Chai Wah Wu, Dec 17 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 2*x*(12 - 11*x)/(1-x)^3. (End)
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(23)/23 = A001008(23)/A102928(23) = 444316699/2736605872, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/23 - 3825136961/123147264240. (End)
E.g.f.: x*(24 + x)*exp(x). - G. C. Greubel, Mar 14 2022