cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A168551 Expansion of g.f. (1/2)*( a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi(x, -n-1, 1) + c*2^(n+1)*(1-x)^(n+1)*LerchPhi(x, -n, 1/2) ), where a = 1, b = -1, and c = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 19, 19, 1, 1, 65, 200, 65, 1, 1, 211, 1536, 1536, 211, 1, 1, 665, 9955, 22350, 9955, 665, 1, 1, 2059, 58521, 251931, 251931, 58521, 2059, 1, 1, 6305, 324322, 2441199, 4596954, 2441199, 324322, 6305, 1, 1, 19171, 1732438, 21480418, 68758180, 68758180, 21480418, 1732438, 19171, 1
Offset: 0

Views

Author

Roger L. Bagula, Nov 29 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,     1;
  1,     5,       1;
  1,    19,      19,        1;
  1,    65,     200,       65,        1;
  1,   211,    1536,     1536,      211,        1;
  1,   665,    9955,    22350,     9955,      665,        1;
  1,  2059,   58521,   251931,   251931,    58521,     2059,       1;
  1,  6305,  324322,  2441199,  4596954,  2441199,   324322,    6305,     1;
  1, 19171, 1732438, 21480418, 68758180, 68758180, 21480418, 1732438, 19171, 1;
		

Crossrefs

Programs

  • Mathematica
    p[x_, n_, a_, b_, c_]= (1/2)*(a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi[x,-n-1,1] + c*2^(n+1)*(1-x)^(n+1)*LerchPhi[x,-n,1/2]);
    Table[CoefficientList[p[x,n,1,-1,1], x], {n,0,10}]//Flatten (* modified by G. C. Greubel, Mar 31 2022 *)
  • Sage
    def A168552(n,k,a,b,c): return (1/2)*( a*binomial(n,k) + sum( (-1)^(k-j)*(b*binomial(n+2, k-j)*(j+1)^(n+1) + 2*c*binomial(n+1,k-j)*(2*j+1)^n) for j in (0..k)) )
    flatten([[A168552(n,k,1,-1,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 31 2022

Formula

G.f.: (1/2)*( a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi(x, -n-1, 1) + c*2^(n+1)*(1 - x)^(n+1)*LerchPhi(x, -n, 1/2) ), where a = 1, b = -1, and c = 1.
From G. C. Greubel, Mar 31 2022: (Start)
T(n, k) = (1/2)*( a*binomial(n,k) + sum( (-1)^(k-j)*(b*binomial(n+2, k-j)*(j+1)^(n+1) + 2*c*binomial(n+1,k-j)*(2*j+1)^n) for j in (0..k)) ), with a = 1, b = -1, and c = 1.
T(n, n-k) = T(n, k). (End)

Extensions

Edited by G. C. Greubel, Mar 31 2022

A132788 a(n) = 2*binomial(2*n,n)/(n+1) - n.

Original entry on oeis.org

1, 2, 7, 24, 79, 258, 851, 2852, 9715, 33582, 117561, 416012, 1485787, 5348866, 19389675, 70715324, 259289563, 955277382, 3534526361, 13128240820, 48932534019, 182965127258, 686119227277, 2579808294624, 9723892802879, 36734706144278, 139067101831981
Offset: 1

Views

Author

Gary W. Adamson, Aug 30 2007

Keywords

Examples

			a(4) = 24 = sum of row 4 terms of triangle A132787: (1 + 11 + 11 + 1).
		

Crossrefs

Row sums of A132787.
Cf. A000108 (Catalan numbers).

Programs

  • Mathematica
    Table[2Binomial[2n,n]/(n+1)-n,{n,27}] (* James C. McMahon, Mar 08 2025 *)
  • PARI
    a(n) = 2*binomial(2*n,n)/(n+1) - n; \\ Andrew Howroyd, Aug 10 2018

Formula

a(n) = 2*A000108(n) - n. - Andrew Howroyd, Aug 10 2018

Extensions

Name changed, a(8) corrected and a(11)-a(27) from Andrew Howroyd, Aug 10 2018
Showing 1-2 of 2 results.