cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132894 Number of (1,0) steps in all paths of length n with steps U=(1,1), D=(1,-1) and H=(1,0), starting at (0,0), staying weakly above the x-axis (i.e., in all length-n left factors of Motzkin paths).

Original entry on oeis.org

0, 1, 4, 15, 52, 175, 576, 1869, 6000, 19107, 60460, 190333, 596652, 1863745, 5804176, 18028755, 55873872, 172818243, 533589660, 1644921789, 5063762220, 15568666029, 47811348816, 146675181975, 449538774048, 1376564658525
Offset: 0

Views

Author

Emeric Deutsch, Oct 07 2007

Keywords

Comments

Number of peaks (i.e., UDs) in all paths of length n+1 with steps U=(1,1), D=(1,-1) and H=(1,0), starting at (0,0), staying weakly above the x-axis (i.e., in all length n+1 left factors of Motzkin paths). Example: a(2)=4 because in the 13 (=A005773(4)) length-3 left factors of Motzkin paths, namely HHH, HHU, H(UD), HUH, HUU, (UD)H, (UD)U, UHD, UHH, UHU, U(UD), UUH and UUU, we have altogether 4 peaks (shown between parentheses).
This could be called the Motzkin transform of A077043 because the substitution x -> x*A001006(x) in the independent variable of the g.f. of A077043 yields the g.f. of this sequence here. - R. J. Mathar, Nov 10 2008

Examples

			a(2) = 4 because in the 5 (=A005773(3)) length-2 left factors of Motzkin paths, namely HH, HU, UD, UH and UU, we have altogether 4 H steps.
G.f. = x + 4*x^2 + 15*x^3 + 52*x^4 + 175*x^5 + 576*x^6 + 1869*x^7 + 6000*x^8 + ...
		

Crossrefs

Column k=1 of A328347.

Programs

  • Maple
    a := n -> add(k*binomial(n, k)*binomial(n-k, floor((n-k)/2)), k=0..n): seq(a(n), n=0..25);
    # second Maple program:
    a:= proc(n) a(n):=`if`(n<2, n, 2*n/(n-1)*a(n-1)+3*a(n-2)) end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 15 2013
  • Mathematica
    a[n_] := n*Hypergeometric2F1[3/2, 1-n, 2, 4]; Table[ a[n] // Abs, {n, 0, 25}] (* Jean-François Alcover, Jul 10 2013 *)
    a[ n_] := If[ n < 0, 0, -(-1)^n n Hypergeometric2F1[ 3/2, 1 - n, 2, 4]]; (* Michael Somos, Aug 06 2014 *)
  • Sage
    A132894 = lambda n: (-1)^(n+1)*jacobi_P(n-1,1,-n+1/2,-7)
    [Integer(A132894(n).n(40),16) for n in range(26)] # Peter Luschny, Sep 23 2014

Formula

a(n) = Sum_{k=0..n} k*A107230(n,k).
a(n) = Sum_{k=0..floor((n+1)/2)} k*A132893(n+1,k).
a(n) = Sum_{k=0..n} k*C(n,k)*C(n-k, floor((n-k)/2)).
G.f.: z/((1-3*z)*sqrt(1-2*z-3*z^2)).
a(n) = Sum_{k=0..n} k*C(n,k)*C(2*k,k)*(-1)^(n-k). - Wadim Zudilin, Oct 11 2010
E.g.f.: exp(x)*x*(BesselI(0, 2*x) + BesselI(1, 2*x)). - Peter Luschny, Aug 25 2012
a(n) = 2*n/(n-1)*a(n-1) + 3*a(n-2) for n>=2, a(n) = n for n<2. a(n) = n*A005773(n). - Alois P. Heinz, Jul 15 2013
a(n) ~ 3^(n-1/2)*sqrt(n/Pi). - Vaclav Kotesovec, Oct 08 2013
a(n) = (-1)^(n+1)*JacobiP(n-1,1,-n+1/2,-7). - Peter Luschny, Sep 23 2014