cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A005430 Apéry numbers: n*C(2*n,n).

Original entry on oeis.org

0, 2, 12, 60, 280, 1260, 5544, 24024, 102960, 437580, 1847560, 7759752, 32449872, 135207800, 561632400, 2326762800, 9617286240, 39671305740, 163352435400, 671560012200, 2756930576400, 11303415363240, 46290177201840, 189368906734800, 773942488394400
Offset: 0

Views

Author

Keywords

Comments

Appears as diagonal in A003506. - Zerinvary Lajos, Apr 12 2006
The aerated sequence 1,0,2,0,12,0,60,0,... has e.g.f. 1+x*Bessel_I(1,2x). - Paul Barry, Mar 29 2010
Conjecture: the terms of the inverse binomial transform are 2*A132894(n). - R. J. Mathar, Oct 21 2012

References

  • Frank Harary and Edgar M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 78, (3.5.25).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002011, A002457, A002736, A005258, A005259, A005429, 1/beta(n, n+1) in A061928.

Programs

  • GAP
    List([0..30], n-> n*Binomial(2*n,n)); # G. C. Greubel, Dec 09 2018
  • Magma
    [n*Binomial(2*n,n): n in [0..30]]; // G. C. Greubel, Dec 09 2018
    
  • Maple
    A005430 := n -> n*binomial(2*n, n);
  • Mathematica
    Table[n*Binomial[2n,n],{n,0,30}] (* Harvey P. Dale, May 29 2015 *)
  • PARI
    a(n)=-(-1)^n*real(polcoeff(serlaplace(x^2*besselh1(1,2*x)),2*n)) \\ Ralf Stephan
    
  • Sage
    [n*binomial(2*n,n) for n in range(30)] # G. C. Greubel, Dec 09 2018
    

Formula

a(n) = A002011(n-1)/2 = 2 * A002457(n-1).
Sum_{n >= 1} 1/a(n) = Pi*sqrt(3)/9. - Benoit Cloitre, Apr 07 2002
G.f.: 2*x/sqrt((1-4*x)^3). - Marco A. Cisneros Guevara, Jul 25 2011
E.g.f.: a(n) = n!* [x^n] exp(2*x)*2*x*(BesselI(0, 2*x)+BesselI(1, 2*x)). - Peter Luschny, Aug 25 2012
D-finite with recurrence (-n+1)*a(n) + 2*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
G.f.: 2*x*(1-4*x)^(-3/2) = -G(0)/2 where G(k) = 1 - (2*k+1)/(1 - 2*x/(2*x - (k+1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
a(n-1) = Sum_{k=0..floor(n/2)} k*C(n,k)*C(n-k,k)*2^(n-2*k). - Robert FERREOL, Aug 29 2015
From Ilya Gutkovskiy, Jan 17 2017: (Start)
a(n) ~ 4^n*sqrt(n)/sqrt(Pi).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(phi)/sqrt(5) = A086466, where phi is the golden ratio. (End)
1/a(n) = (-1)^n*Sum_{j=0..n-1} binomial(n-1,j)*Bernoulli(j+n)/(j+n) for n >= 1. See the Amdeberhan & Cohen link. - Peter Luschny, Jun 20 2017
1/a(n) = Sum_{k=0..n} (-1)^(k+1)*binomial(n,k)*HarmonicNumber(n+k) for n >= 1. - Peter Luschny, Aug 15 2017
Sum_{n>=1} x^n/a(n) = 2*sqrt(x/(4-x))*arcsin(sqrt(x)/2), for abs(x) < 4 (Adegoke et al., 2022, section 6, p. 11). - Amiram Eldar, Dec 07 2024

Extensions

More terms from James Sellers, May 01 2000

A328347 Number T(n,k) of n-step walks on cubic lattice starting at (0,0,0), ending at (0,k,n-k) and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1); triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 3, 4, 3, 7, 15, 15, 7, 19, 52, 72, 52, 19, 51, 175, 300, 300, 175, 51, 141, 576, 1185, 1480, 1185, 576, 141, 393, 1869, 4473, 6685, 6685, 4473, 1869, 393, 1107, 6000, 16380, 28392, 33880, 28392, 16380, 6000, 1107, 3139, 19107, 58572, 115332, 159264, 159264, 115332, 58572, 19107, 3139
Offset: 0

Views

Author

Alois P. Heinz, Oct 13 2019

Keywords

Comments

These walks are not restricted to the first (nonnegative) octant.

Examples

			Triangle T(n,k) begins:
     1;
     1,    1;
     3,    4,     3;
     7,   15,    15,     7;
    19,   52,    72,    52,    19;
    51,  175,   300,   300,   175,    51;
   141,  576,  1185,  1480,  1185,   576,   141;
   393, 1869,  4473,  6685,  6685,  4473,  1869,  393;
  1107, 6000, 16380, 28392, 33880, 28392, 16380, 6000, 1107;
  ...
		

Crossrefs

Columns k=0-1 give: A002426, A132894 = n*A005773(n).
Row sums give A084609.
T(2n,n) gives A328426.

Programs

  • Maple
    b:= proc(l) option remember; `if`(l[-1]=0, 1, (r-> add(add(
          add(`if`(i+j+k=1, (h-> `if`(add(t, t=h)<0, 0, b(h)))(
          sort(l-[i, j, k])), 0), k=r), j=r), i=r))([$-1..1]))
        end:
    T:= (n, k)-> b(sort([0, k, n-k])):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[l_List] := b[l] = If[l[[-1]] == 0, 1, Sum[If[i + j + k == 1, Function[h, If[Total[h] < 0, 0, b[h]]][Sort[l - {i, j, k}]], 0], {i, {-1, 0, 1}}, {j, {-1, 0, 1}}, {k, {-1, 0, 1}}]];
    T[n_, k_] := b[Sort[{0, k, n - k}]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)

Formula

T(n,k) = T(n,n-k).

A107230 A number triangle of inverse Chebyshev transforms.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 6, 12, 12, 4, 1, 10, 30, 30, 20, 5, 1, 20, 60, 90, 60, 30, 6, 1, 35, 140, 210, 210, 105, 42, 7, 1, 70, 280, 560, 560, 420, 168, 56, 8, 1, 126, 630, 1260, 1680, 1260, 756, 252, 72, 9, 1, 252, 1260, 3150, 4200, 4200, 2520, 1260, 360, 90, 10, 1
Offset: 0

Views

Author

Paul Barry, May 13 2005

Keywords

Comments

First column is A001405, second column is A100071, third column is A107231. Row sums are A005773(n+1), diagonal sums are A026003. The inverse Chebyshev transform concerned takes a g.f. g(x)->(1/sqrt(1-4x^2))g(xc(x^2)) where c(x) is the g.f. of A000108. It transforms a(n) to b(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*a(n-2k). Then a(n) = Sum_{k=0..floor(n/2)} (n/(n-k))*(-1)^k*binomial(n-k,k) *b(n-2k).
Triangle read by rows: T(n,k) is the number of paths of length n with steps U=(1,1), D=(1,-1) and H=(1,0), starting at (0,0), staying weakly above the x-axis (i.e., left factors of Motzkin paths) and having k H steps. Example: T(3,1)=6 because we have HUD. HUU, UDH, UHD, UHU and UUH. Sum_{k=0..n} k*T(n,k) = A132894(n). - Emeric Deutsch, Oct 07 2007

Examples

			Triangle begins
   1;
   1,  1;
   2,  2,  1;
   3,  6,  3,  1;
   6, 12, 12,  4,  1;
  10, 30, 30, 20,  5,  1;
		

Crossrefs

Cf. A132894.

Programs

  • Magma
    [[Binomial(n, k)*Binomial(n-k, Floor((n-k)/2)): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 11 2019
    
  • Maple
    T:=proc(n,k) options operator, arrow: binomial(n, k)*binomial(n-k, floor((1/2)*n-(1/2)*k)) end proc: for n from 0 to 11 do seq(T(n,k),k=0..n) end do; # yields sequence in triangular form - Emeric Deutsch, Oct 07 2007
  • Mathematica
    Table[Binomial[n, k]*Binomial[n-k, Floor[(n-k)/2]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 11 2019 *)
  • PARI
    T(n, k) = binomial(n, k)*binomial(n-k, (n-k)\2); \\ Michel Marcus, Feb 10 2019
    
  • Sage
    [[binomial(n, k)*binomial(n-k, floor((n-k)/2)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 11 2019

Formula

T(n,k) = binomial(n,k)*binomial(n-k, floor((n-k)/2)).
G.f.: G=G(t,z) satisfies z*(1-2*z-t*z)*G^2+(1-2*z-t*z)*G-1=0. - Emeric Deutsch, Oct 07 2007
E.g.f.: exp(x*y)*(BesselI(0,2*x)+BesselI(1,2*x)). - Vladeta Jovovic, Dec 02 2008

A383948 Expansion of 1/sqrt((1-3*x)^3 * (1-7*x)).

Original entry on oeis.org

1, 8, 51, 308, 1855, 11340, 70665, 448320, 2887155, 18815240, 123759097, 819969276, 5464090177, 36580917716, 245837438055, 1657396783440, 11204207037315, 75918595916520, 515462211835305, 3506072423912940, 23885410548196701, 162951783575205108, 1113110415733083531
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/Sqrt((1- 3*x)^3 * (1-7*x)); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 27 2025
  • Mathematica
    CoefficientList[Series[ 1/Sqrt[(1-3*x)^3*(1-7*x)],{x,0,33}],x] (* Vincenzo Librandi, Aug 27 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt((1-3*x)^3*(1-7*x)))
    

Formula

n*a(n) = (10*n-2)*a(n-1) - 21*n*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 3^k * 7^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(2*(n-k),n-k).
a(n) = Sum_{k=0..n} (-1)^k * 7^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(n+1,n-k).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(2*k,k) * binomial(n+1,n-k).

A132893 Triangle read by rows: T(n,k) is the number of paths of length n with steps U=(1,1), D=(1,-1) and H=(1,0), starting at (0,0), staying weakly above the x-axis (i.e., left factors of Motzkin paths) and having k peaks (i.e., UDs), 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 2, 4, 1, 9, 4, 21, 13, 1, 50, 40, 6, 121, 118, 27, 1, 296, 340, 106, 8, 730, 965, 381, 46, 1, 1812, 2708, 1296, 220, 10, 4521, 7535, 4241, 935, 70, 1, 11328, 20828, 13482, 3676, 395, 12, 28485, 57266, 41916, 13658, 1940, 99, 1
Offset: 0

Views

Author

Emeric Deutsch, Oct 08 2007

Keywords

Comments

Row n has 1 + floor(n/2) terms.
Row sums yield A005773.

Examples

			T(3,1)=4 because we have HUD, UDH, UDU and UUD.
Triangle starts:
    1;
    2;
    4,   1;
    9,   4;
   21,  13,   1;
   50,  40,   6;
  121, 118,  27,   1;
		

Crossrefs

Programs

  • Maple
    G:=((-1+3*z-z^2+t*z^2+sqrt((1+z+z^2-t*z^2)*(1-3*z+z^2-t*z^2)))*1/2)/(z*(1-3*z+z^2-t*z^2)): Gser:=simplify(series(G,z=0,15)): for n from 0 to 12 do P[n]:=sort(coeff(Gser,z,n)) end do: for n from 0 to 12 do seq(coeff(P[n],t,j), j=0..floor((1/2)*n)) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; expand(`if`(y<0, 0,
         `if`(x=0, 1, b(x-1, y, 1)+b(x-1, y-1, 1)*t+b(x-1, y+1, z))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0, 1)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Feb 01 2019
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = Expand[If[y < 0, 0, If[x == 0, 1, b[x - 1, y, 1] + b[x - 1, y - 1, 1]*t + b[x - 1, y + 1, z]]]];
    T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]] @ b[n, 0, 1];
    T /@ Range[0, 15] // Flatten (* Jean-François Alcover, Oct 06 2019, after Alois P. Heinz *)

Formula

T(n,0) = A091964(n).
Sum_{k=0..floor(n/2)} k*T(n,k) = A132894(n-1).
G.f.: G = G(t,z) satisfies z(1 - 3z + z^2 - tz^2)G^2 + (1 - 3z + z^2 - tz^2)G - 1 = 0 (see the Maple program for the explicit expression of G).

A137213 First differences of A137212.

Original entry on oeis.org

0, 1, 4, 15, 52, 173, 560, 1779, 5576, 17305, 53308, 163287, 497980, 1513541, 4587944, 13878075, 41910032, 126395953, 380795380, 1146267039, 3448170436, 10367130845, 31156000928, 93599839107, 281117798360, 844121793481
Offset: 0

Views

Author

Paul Curtz, Mar 06 2008

Keywords

Crossrefs

Programs

  • Magma
    [n le 3 select (n-1)^2 else 5*Self(n-1) -5*Self(n-2) -3*Self(n-3): n in [1..31]]; // G. C. Greubel, Jan 05 2022
    
  • Mathematica
    LinearRecurrence[{5,-5,-3},{0,1,4},30] (* Harvey P. Dale, Apr 18 2019 *)
  • Sage
    [3^n - lucas_number1(n+1,2,-1) for n in (0..30)] # G. C. Greubel, Jan 05 2022

Formula

From R. J. Mathar, Mar 17 2008: (Start)
O.g.f.: 1/(1-3*x) - 1/(1-2*x-x^2) = x*(1-x)/( (1-3*x)*(1-2*x-x^2) ).
a(n) = 3^n - A000129(n+1). (End)

Extensions

More terms from R. J. Mathar, Mar 17 2008

A263841 Expansion of (1 - 2*x - x^2)/(sqrt(1+x)*(1-3*x)^(3/2)*2*x) - 1/(2*x).

Original entry on oeis.org

1, 3, 9, 28, 87, 271, 843, 2619, 8123, 25153, 77763, 240054, 740017, 2278329, 7006093, 21520872, 66039651, 202462113, 620164491, 1898109900, 5805127269, 17741909157, 54188530641, 165405964227, 504601360389, 1538559689751, 4688812503053, 14282580916834, 43486805133903
Offset: 0

Views

Author

N. J. A. Sloane, Nov 02 2015

Keywords

Crossrefs

Programs

  • Maple
    A263841 := n -> add((k+1)*binomial(n, k)*binomial(n-k, iquo(n-k,2)), k = 0 .. n):
    seq(A263841(n), n = 0 .. 28); # Mélika Tebni, Jan 25 2024
  • Mathematica
    CoefficientList[Series[(1-2x-x^2)/(Sqrt[1+x] (1-3x)^(3/2) 2x)-1/(2x),{x,0,30}],x] (* Harvey P. Dale, Aug 21 2017 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-2*x-x^2)/(sqrt(1+x)*(1-3*x)^(3/2)*2*x)-1/(2*x)) \\ Altug Alkan, Nov 10 2015

Formula

D-finite with recurrence: -(n+1)*(n^2+n-3)*a(n) + 2*(n^3+3*n^2-4*n-3)*a(n-1) + 3*(n-1)*(n^2+3*n-1)*a(n-2) = 0. - R. J. Mathar, Feb 17 2016
From Mélika Tebni, Jan 24 2024: (Start)
a(n) = A005773(n+1) + A132894(n).
E.g.f.: (1+x)*exp(x)*(BesselI(0,2*x) + BesselI(1,2*x)). (End)
From Mélika Tebni, Jan 25 2024: (Start)
a(n) = Sum_{k=0..n} A189911(k)*binomial(n,k).
a(n) = Sum_{k=0..n} (k+1)*binomial(n,k)*binomial(n-k,floor((n-k)/2)). (End)

A337991 Triangle read by rows: T(n,m) = Sum_{i=1..n} C(n,i-m)*C(n+m-i,i-1)*C(n+m-i,m)/n, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 4, 1, 4, 13, 15, 7, 1, 9, 35, 52, 36, 11, 1, 21, 96, 175, 160, 75, 16, 1, 51, 267, 576, 655, 415, 141, 22, 1, 127, 750, 1869, 2541, 2030, 952, 245, 29, 1, 323, 2123, 6000, 9492, 9156, 5488, 1988, 400, 37, 1, 835, 6046, 19107, 34476, 38976, 28476, 13356, 3852, 621, 46, 1
Offset: 0

Views

Author

Vladimir Kruchinin, Oct 06 2020

Keywords

Examples

			Triangle begins as:
   1;
   1,   1;
   1,   2,   1;
   2,   5,   4,   1;
   4,  13,  15,   7,   1;
   9,  35,  52,  36,  11,   1;
  21,  96, 175, 160,  75,  16,  1;
  51, 267, 576, 655, 415, 141, 22,  1;
  ...
		

Crossrefs

Diagonals include: A000124, A006008.
Sums include: A000007 (signed row), A019590 (signed diagonal), A025227 (row), A102407 (diagonal).

Programs

  • Magma
    B:=Binomial;
    A337991:= func< n,k | n eq 0 select 1 else (1/n)*(&+[B(n, j-k)*B(n+k-j, j-1)*B(n+k-j, k): j in [1..n]]) >;
    [A337991(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 31 2024
    
  • Mathematica
    T[0, 0] = 1; T[n_, m_] := Sum[Binomial[n, i - m] * Binomial[n + m - i, i - 1] * Binomial[n + m - i, m]/n, {i, 1, n}]; Table[T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Amiram Eldar, Oct 06 2020 *)
  • Maxima
    T(n,m):=if m=n then 1 else if n=0 then 0 else sum(binomial(n,i-m)*binomial(n+m-i,i-1)*binomial(n+m-i,m),i,1,n)/n;
    
  • Python
    def A337991(n,k):
        b=binomial
        if n==0: return 1
        else: return (1/n)*sum(b(n, j-k)*b(n+k-j, j-1)*b(n+k-j, k) for j in range(1,n+1))
    # SageMath
    flatten([[A337991(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 31 2024

Formula

G.f.: ( 1 - x*(y-1)- sqrt(x^2*(y^2-2*y-3) - 2*x*(y+1) + 1) )/(2*x).
From G. C. Greubel, Oct 31 2024: (Start)
T(n, k) = binomial(n, 1-k)*binomial(n+k-1, k)*Hypergeometric3F2([1-n, (1 -n -k)/2, (2-n-k)/2], [2-k, 1-n-k], 4), with T(0, 0) = 1.
T(n, 0) = A086246(n+1).
T(n, n-1) = A000124(n-1), n >= 1.
T(n, n-2) = A006008(n-1), n >= 2.
T(n, n-3) = (1/72)*(n^4 -6*n^3 +47*n^2 -114*n +144)*binomial(n-1,2), n >= 3.
T(n, n-4) = (1/480)*(n-2)*(n^4 -8*n^3 +99*n^2 -332*n +960)*binomial(n-1,3), n >= 4.
Sum_{k=0..n} T(n, k) = A025227(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A102407(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A019590(n+1). (End)

A359087 a(n) is equal to the last point of a reverse pyramid summation with base 1, 2, 3, ..., n-2, n-1, n, n-1, n-2, ..., 3, 2, 1.

Original entry on oeis.org

1, 4, 19, 78, 301, 1108, 3951, 13758, 47049, 158616, 528619, 1745098, 5715429, 18593032, 60136183, 193525002, 620046513, 1978886448, 6293809971, 19955385762, 63094947981, 198990438408, 626141673375, 1966085927898, 6161660863929, 19276374528468, 60206635741131
Offset: 1

Views

Author

Moosa Nasir, Dec 15 2022

Keywords

Comments

Each element in the pyramid below the base is equal to the sum of the top left, top, and top right elements.
Each row has 2*n-(1+2*r) elements where r is the row number starting from 0.
The sum of elements in the first row is n^2.
The total number of elements in the pyramid is n^2.

Examples

			For n = 3:
  1  2  3  2  1
     6  7  6
       19
so a(3) = 19.
For n = 4:
  1   2   3   4   3   2   1
      6   9  10   9   6
         25  28  25
             78
so a(4) = 78.
		

Crossrefs

Programs

  • C
    unsigned long tri(int n, int k)
    {
        if (n == 0 && k == 0) return 1;
        if(k < -n || k > n) return 0;
        return tri(n - 1, k - 1) + tri(n - 1, k) + tri(n - 1, k + 1);
    }
    unsigned long a(int n)
    {
        unsigned long sum = 0;
        sum += tri(n - 1,0) * n;
        for (int i = 1; i < n; i++)
        {
            sum += 2 * tri(n - 1,n - i) * i;
        }
        return sum;
    }
  • Maple
    f:= proc(n) local L,i;
      L:= [seq(i,i=1..n),seq(n-i,i=1..n-1)];
      for i from 1 to n-1 do
        L:= L[1..-3] + L[2..-2] + L[3..-1]
      od;
      op(L)
    end proc:
    map(f, [$1..30]); # Robert Israel, Dec 17 2022
  • Mathematica
    f[n_] := Module[{L, i}, L = Range[n]~Join~Table[n-i, {i, 1, n-1}]; For[i = 1, i <= n-1, i++, L = L[[1;;-3]] + L[[2;;-2]] + L[[3;;-1]]]; L[[1]]];
    f /@ Range[30] (* Jean-François Alcover, Jan 25 2023, after Robert Israel *)

Formula

a(n) = Sum_{k=1..2*n-1} A004737(k + (n-1)^2) * A027907(k + (n-1)^2 - 1).
Empirical g.f.: x/(1-3*x)^2 - 2*x^2/((1+x)^(1/2)*(1-3*x)^(3/2)). - Robert Israel, Dec 17 2022
a(n) = n*3^(n-1) - 2*A132894(n-1) (conjectured). - Bernard Schott, Dec 20 2022

A378810 Number of horizontal steps in all peak and valleyless Motzkin meanders of length n.

Original entry on oeis.org

0, 1, 4, 13, 39, 110, 300, 801, 2106, 5473, 14097, 36056, 91697, 232108, 585212, 1470557, 3684682, 9209417, 22967446, 57167993, 142051519, 352427720, 873157093, 2160579740, 5340150100, 13185150903, 32523933395, 80156852042, 197391001215, 485723767342
Offset: 0

Views

Author

John Tyler Rascoe, Dec 08 2024

Keywords

Comments

Motzkin meanders are lattice paths starting at (0,0) with steps Up (0,1), Horizontal (1,0), and Down (0,-1) that stay weakly above the x-axis. Peak and valleyless Motzkin meanders avoid UD and DU.

Examples

			For n = 3 we have meanders, UUU, UUH, UHU, UHD, HUU, UHH, HHU, HUH, HHH; giving a total of a(3) = 13 H steps.
		

Crossrefs

Programs

  • PARI
    A088855(n,k) = {binomial(floor((n-1)/2), floor((k-1)/2))*binomial(ceil((n-1)/2),ceil((k-1)/2))}
    A_xy(N) = {my(x='x+O('x^N), h = sum(n=0,N, (1/(1-y*x)^(n+1)) * (if(n<1,1,0) + sum(k=1,n, A088855(n,k)*x^(n+k-1)*(y^(k-1)) )) )); h}
    P_xy(N) = Pol(A_xy(N), {x})
    A_x(N) = {my(px = deriv(P_xy(N),y), y=1); Vecrev(eval(px))}
    A_x(20)

Formula

a(n) = Sum_{k=1..n} A378809(n,k)*k.
Showing 1-10 of 11 results. Next