cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132900 Colored Motzkin paths where each of the steps has three possible colors.

Original entry on oeis.org

1, 3, 18, 108, 729, 5103, 37179, 277749, 2119203, 16435305, 129199212, 1027098306, 8243181351, 66698502705, 543507899346, 4456368744804, 36738955831707, 304354824214977, 2532328310730798, 21152326520189628, 177310026608555619, 1491097815365481477
Offset: 0

Views

Author

Paul Barry, Sep 04 2007

Keywords

Crossrefs

Programs

  • Maple
    seq(9^n * simplify(hypergeom([3/2, -n], [3], 4/3)), n = 0..20); # Peter Bala, Feb 04 2024
  • Mathematica
    CoefficientList[Series[(1-3*x-Sqrt[1-6*x-27*x^2])/(18*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    my(x='x+O('x^50)); Vec((1-3*x-sqrt(1-6*x-27*x^2))/(18*x^2)) \\ G. C. Greubel, Mar 21 2017

Formula

G.f.: (1-3*x-sqrt(1-6*x-27*x^2))/(18*x^2).
G.f. is the reversion of x/(1+3*x+9*x^2).
a(n) = 3^n * A001006(n).
a(n) = Sum_{k=0..floor(n/2)} C(n,2k)*C(k)*3^(n-2k)*3^k*3^k, where C(n) = A000108(n).
a(n) = (1/(2*Pi))*Integral_{x=-3..9} x^n*sqrt(27 + 6x - x^2)/9.
Conjecture: (n+2)*a(n) - 3*(2*n+1)*a(n-1) + 27*(1-n)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011
a(n) ~ 3^(2*n+3/2)/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
G.f.: 1/G(x), with G(x) = 1-3*x-9*x^2/G(x) (Jacobi continued fraction). - Nikolaos Pantelidis, Feb 01 2023
From Peter Bala, Feb 02 2024: (Start)
G.f.: 1/(1 + 3*x)*c(3*x/(1 + 3*x))^2 = 1/(1 - 9*x)*c(-3*x/(1 - 9*x))^2, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers.
a(n) = 3^n *Sum_{k = 0..n} (-1)^(n+k)*binomial(n,k)*Catalan(k+1).
a(n) = 9^n * Sum_{k = 0..n} (-3)^(-k)*binomial(n,k)*Catalan(k+1). (End)