A132922 Row sums of triangle A132921.
1, 4, 10, 19, 32, 50, 75, 110, 160, 233, 342, 508, 765, 1168, 1806, 2823, 4452, 7070, 11287, 18090, 29076, 46829, 75530, 121944, 197017, 318460, 514930, 832795, 1347080, 2179178, 3525507, 5703878, 9228520, 14931473, 24159006, 39089428, 63247317, 102335560
Offset: 1
Keywords
Examples
a(4) = 19 = sum of row 4 terms of triangle A132921: (4 + 4 + 5 + 6). a(5) = 32 = (1, 4, 6, 4, 1) dot (1, 3, 3, 0, 1) = (1 + 12 + 18 + 0 + 1).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Crossrefs
Cf. A132922.
Programs
-
Mathematica
LinearRecurrence[{4, -5, 1, 2, -1},{1, 4, 10, 19, 32},50] (* or *) a[n_]:=n*(n - 1) + Fibonacci[n + 2] - 1; Array[a, 50] (* Stefano Spezia, Sep 01 2018 *)
-
PARI
a(n) = n*(n-1) + fibonacci(n+2) - 1; \\ Andrew Howroyd, Aug 28 2018
-
PARI
Vec((1 - x^2 - 2*x^3)/((1 - x)^3*(1 - x - x^2)) + O(x^40)) \\ Andrew Howroyd, Aug 28 2018
Formula
Binomial transform of [1, 3, 3, 0, 1, -1, 2, -3, 5, -8, ...].
From Andrew Howroyd, Aug 28 2018: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5) for n > 5.
a(n) = n*(n-1) + Fibonacci(n+2) - 1.
G.f.: x*(1 - x^2 - 2*x^3)/((1 - x)^3*(1 - x - x^2)).
(End)
Extensions
Terms a(11) and beyond from Andrew Howroyd, Aug 28 2018