A132953 a(n) is the sum of the isolated totatives of n.
0, 1, 0, 4, 0, 6, 0, 16, 0, 20, 0, 24, 0, 42, 15, 64, 0, 54, 0, 80, 21, 110, 0, 96, 0, 156, 0, 168, 0, 120, 0, 256, 33, 272, 35, 216, 0, 342, 39, 320, 0, 252, 0, 440, 135, 506, 0, 384, 0, 500, 51, 624, 0, 486, 55, 672, 57, 812, 0, 480, 0, 930, 189, 1024, 65, 660, 0, 1088, 69
Offset: 1
Keywords
Examples
The positive integers which are <= 15 and are coprime to 15 are 1,2,4,7,8,11,13,14. Of these, 1 and 2 are adjacent, 7 and 8 are adjacent and 13 and 14 are adjacent. So the isolated totatives of 15 are 4 and 11. Therefore a(15) = 4 + 11 = 15.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Crossrefs
Cf. A132952.
Programs
-
Mathematica
fQ[k_, n_] := GCD[k, n] == 1 && GCD[k - 1, n] > 1 && GCD[k + 1, n] > 1; f[n_] := Plus @@ Select[ Rest[ Range@n - 1], fQ[ #, n] &]; Array[f, 69] (* Robert G. Wilson v *)
-
PARI
A132953(n) = { my(s=0,pg=0,g=1,ng); for(k=1,n-1,if((1!=(ng=gcd(n,k+1)))&&(1==g)&&(1!=pg),s += k); pg = g; g = ng); (s); }; \\ Antti Karttunen, Nov 01 2018
Formula
a(n) = (n/2) * A132952(n). - Robert G. Wilson v, Sep 13 2007
Extensions
Edited and extended by Robert G. Wilson v, Sep 13 2007
Comments