cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A085140 Expansion of q^(-1/6) * eta(q^2)^3 / eta(q)^2 in powers of q.

Original entry on oeis.org

1, 2, 2, 4, 5, 6, 10, 12, 15, 20, 26, 32, 40, 50, 60, 76, 92, 110, 134, 160, 191, 230, 272, 320, 380, 446, 522, 612, 715, 830, 966, 1120, 1292, 1494, 1720, 1976, 2272, 2602, 2974, 3400, 3876, 4412, 5020, 5700, 6460, 7322, 8282, 9352, 10559, 11900, 13396
Offset: 0

Views

Author

Michael Somos, Jun 20 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In the notation of Dragonette on page 498 Lemma 6, the generating function is G_2(q^(1/2))/2.
Equals A000009 convolved with A010054. [Gary W. Adamson, Mar 16 2010]

Examples

			G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 10*x^6 + 12*x^7 + 15*x^8 + ...
G.f. = q + 2*q^7 + 2*q^13 + 4*q^19 + 5*q^25 + 6*q^31 + 10*q^37 + 12*q^43 + 15*q^49 + ...
		

Crossrefs

Cf. A000009, A010054. [Gary W. Adamson, Mar 16 2010]

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k) * (1 + x^k)^3, {k, n}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 2, n, 2}] / Product[ 1 - x^k, {k, 1, n, 2}]^2, {x, 0, n}];
    a[ n_] := With[ {t = Log[q]/(2 Pi I)}, SeriesCoefficient[ q^(-1/6) DedekindEta[ 2 t]^3 / DedekindEta[ t]^2, {q, 0, n}]];
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ -x, x]^3, {x, 0, n}]; (* Michael Somos, Jul 11 2015 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(j j + j) / Product[ 1 + x^k, {k, 1, 2 j + 1, 2}], {j, 0, Sqrt[8 n + 1]/2}], {x, 0, 2 n}]]; (* Michael Somos, Jul 11 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 / eta(x + A)^2, n))};

Formula

Expansion of psi(x) / chi(-x) = f(-x^2) / chi(-x)^2 = f(-x) / chi(-x)^3 = phi(-x) / chi(-x)^4 = phi(x) / chi(-x^2)^2 = f(-x^2)^2 / phi(-x) = f(-x)^4 / phi(-x)^3 = psi(x)^2 / f(-x^2) = chi(x)^2 * psi(x^2) = f(-x^2)^3 / f(-x)^2 in powers of x where f(), phi(), psi(), chi() are Ramanujan theta functions. - Michael Somos, Feb 18 2006
Euler transform of period 2 sequence [ 2, -1, ...].
G.f.: Product_{k>0} (1 - x^(2*k)) / (1 - x^(2*k - 1))^2 = Product_{k>0} (1 - x^k) * (1 + x^k)^3.
a(n) = b(n)+b(n-1)+b(n-3)+b(n-6)+...+b(n-k*(k+1)/2)+..., where b() is A000009(). E.g. a(8) = b(8)+b(7)+b(5)+b(2) = 6+5+3+1 = 15. - Vladeta Jovovic, Aug 18 2004
G.f. is a period 1 Fourier series which satisfies f(-1 / (288 t)) = (3/4)^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132970. - Michael Somos, Jul 11 2015
a(n) = A053254(2*n). - Michael Somos, Jul 11 2015
a(n) ~ exp(Pi*sqrt(n/3))/(4*sqrt(n)). - Vaclav Kotesovec, Sep 07 2015

A132969 Expansion of phi(q) * chi(q) in powers of q where phi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 3, 2, 1, 5, 5, 3, 5, 6, 10, 10, 8, 13, 15, 15, 16, 23, 27, 25, 30, 35, 40, 42, 45, 55, 66, 68, 70, 86, 95, 100, 110, 125, 141, 150, 161, 185, 207, 215, 235, 266, 293, 310, 335, 375, 410, 438, 470, 521, 575, 610, 653, 725, 785, 835, 900, 983, 1070, 1140
Offset: 0

Views

Author

Michael Somos, Sep 04 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x + 2*x^2 + x^3 + 5*x^4 + 5*x^5 + 3*x^6 + 5*x^7 + 6*x^8 + 10*x^9 + ...
G.f. = 1/q + 3*q^23 + 2*q^47 + q^71 + 5*q^95 + 5*q^119 + 3*q^143 + 5*q^167 +...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; top of p. 60.

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 - x^(2*k)) * ( (1 + x^k) / (1 + x^(2*k)) )^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x, x^2], {x, 0, n}]; (* Michael Somos, Oct 31 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, (n+1)\2, 1 + x^(2*k-1), 1 + x*O(x^n)) * sum(k=1, sqrtint(n), 2 * x^k^2, 1), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 / (eta(x + A) * eta(x^4 + A))^3, n))};

Formula

Expansion of phi(q) + 2 * psi(q) in powers of q where phi(), psi() are Ramanujan 3rd order mock theta functions.
Expansion of q^(1/24) * eta(q^2)^7 / (eta(q) * eta(q^4))^3 in powers of q.
Euler transform of period 4 sequence [ 3, -4, 3, -1, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = 48^(1/2) (t/i)^(1/2) f(t) where q = exp(2 Pi i t).
G.f.: ( Sum_{k in Z} x^k^2 ) * ( Product_{k>0} (1 + x^(2*k-1)) ).
G.f.: Product_{k>0} (1 - x^(2*k)) * ((1 + x^k) / (1 + x^(2*k)))^3.
a(n) = (-1)^n * A132970(n). a(n) = (-1)^n * A124226(n) unless n=1.
a(n) ~ exp(Pi*sqrt(n/6)) / (2*sqrt(n)). - Vaclav Kotesovec, Sep 08 2015

A124226 Number of partitions of n with even crank minus number of partitions of n with odd crank.

Original entry on oeis.org

1, -1, 2, -1, 5, -5, 3, -5, 6, -10, 10, -8, 13, -15, 15, -16, 23, -27, 25, -30, 35, -40, 42, -45, 55, -66, 68, -70, 86, -95, 100, -110, 125, -141, 150, -161, 185, -207, 215, -235, 266, -293, 310, -335, 375, -410, 438, -470, 521, -575, 610, -653, 725, -785, 835, -900, 983, -1070, 1140, -1220, 1331, -1443, 1532
Offset: 0

Views

Author

Vladeta Jovovic, Oct 20 2006

Keywords

Comments

For a partition p, let l(p) = largest part of p, w(p) = number of 1's in p, m(p) = number of parts of p larger than w(p). The crank of p is given by l(p) if w(p) = 0, otherwise m(p)-w(p).

Examples

			G.f. = 1 - x + 2*x^2 - x^3 + 5*x^4 - 5*x^5 + 3*x^6 - 5*x^7 + 6*x^8 + ...
		

Crossrefs

Programs

  • Maple
    p:=2*q + product((1-q^i)/(1+q^i)^2, i=1..200): s:=series(p, q, 200): for j from 0 to 199 do printf(`%d,`,coeff(s,q, j)) od: # James Sellers, Nov 30 2006

Formula

G.f.: 2*x + Product_{i>=1} (1-x^i)/(1+x^i)^2.
a(n) = A132970(n) unless n=1. - Michael Somos, Jul 27 2015
a(n) ~ (-1)^n * exp(Pi*sqrt(n/6)) / (2*sqrt(n)). - Vaclav Kotesovec, Oct 14 2017

Extensions

More terms from James Sellers, Nov 30 2006

A124227 Number of partitions of n with even crank.

Original entry on oeis.org

1, 0, 2, 1, 5, 1, 7, 5, 14, 10, 26, 24, 45, 43, 75, 80, 127, 135, 205, 230, 331, 376, 522, 605, 815, 946, 1252, 1470, 1902, 2235, 2852, 3366, 4237, 5001, 6230, 7361, 9081, 10715, 13115, 15475, 18802, 22145, 26742, 31463, 37775, 44362, 52998, 62142
Offset: 0

Views

Author

Vladeta Jovovic, Oct 20 2006

Keywords

Comments

For a partition p, let l(p) = largest part of p, w(p) = number of 1's in p, m(p) = number of parts of p larger than w(p). The crank of p is given by l(p) if w(p) = 0, otherwise m(p)-w(p).

Crossrefs

Programs

  • Maple
    A000041 := proc(n) combinat[numbpart](n) ; end: A124226 := proc(n) local x,gf,i ; gf := 1; for i from 1 to n+1 do gf := taylor(gf*(1-x^i)/(1+x^i)^2,x=0,n+1) ; od ; coeftayl(2*x+gf,x=0,n) ; end: A124227 := proc(n) (A000041(n)+A124226(n))/2 ; end: for n from 0 to 60 do printf("%a, ",A124227(n)) ; od ; # R. J. Mathar, May 18 2007
  • Mathematica
    A132970[n_] := SeriesCoefficient[EllipticTheta[4, 0, x] QPochhammer[x, x^2], {x, 0, n}];
    a[n_] := If[n == 1, 0, (PartitionsP[n] + A132970[n])/2];
    Table[a[n], {n, 0, 47}] (* Jean-François Alcover, Oct 26 2023, after Michael Somos in A124226 *)

Formula

a(n) = (A000041(n) + A124226(n))/2.

Extensions

More terms from R. J. Mathar, May 18 2007

A124228 Number of partitions of n with odd crank.

Original entry on oeis.org

0, 1, 0, 2, 0, 6, 4, 10, 8, 20, 16, 32, 32, 58, 60, 96, 104, 162, 180, 260, 296, 416, 480, 650, 760, 1012, 1184, 1540, 1816, 2330, 2752, 3476, 4112, 5142, 6080, 7522, 8896, 10922, 12900, 15710, 18536, 22438, 26432, 31798, 37400, 44772, 52560, 62612
Offset: 0

Views

Author

Vladeta Jovovic, Oct 20 2006

Keywords

Comments

For a partition p, let l(p) = largest part of p, w(p) = number of 1's in p, m(p) = number of parts of p larger than w(p). The crank of p is given by l(p) if w(p) = 0, otherwise m(p)-w(p).

Crossrefs

Programs

  • Maple
    A000041 := proc(n) combinat[numbpart](n) ; end: A124226 := proc(n) local x,gf,i ; gf := 1; for i from 1 to n+1 do gf := taylor(gf*(1-x^i)/(1+x^i)^2,x=0,n+1) ; od ; coeftayl(2*x+gf,x=0,n) ; end: A124228 := proc(n) (A000041(n)-A124226(n))/2 ; end: for n from 0 to 60 do printf("%a, ",A124228(n)) ; od ; # R. J. Mathar, May 18 2007
  • Mathematica
    A132970[n_] := SeriesCoefficient[EllipticTheta[4, 0, x] QPochhammer[x, x^2], {x, 0, n}];
    a[n_] := If[n < 2, n, (PartitionsP[n] - A132970[n])/2];
    Table[a[n], {n, 0, 47}] (* Jean-François Alcover, Oct 26 2023, after Michael Somos in A124226 *)

Formula

a(n) = (A000041(n)-A124226(n))/2.

Extensions

More terms from R. J. Mathar, May 18 2007
Showing 1-5 of 5 results.