cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132972 Expansion of chi(q)^3 / chi(q^3) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 3, 3, 3, 6, 9, 12, 15, 21, 30, 36, 45, 60, 78, 96, 117, 150, 189, 228, 276, 342, 420, 504, 603, 732, 885, 1050, 1245, 1488, 1773, 2088, 2454, 2901, 3420, 3996, 4662, 5460, 6378, 7404, 8583, 9972, 11565, 13344, 15378, 17748, 20448, 23472, 26910, 30876
Offset: 0

Views

Author

Michael Somos, Sep 06 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*q + 3*q^2 + 3*q^3 + 6*q^4 + 9*q^5 + 12*q^6 + 15*q^7 + 21*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 + x^(2*k-1))^3 / (1 + x^(6*k-3)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q, q^2]^3 / QPochhammer[ -q^3, q^6], {q, 0, n}]; (* Michael Somos, Oct 31 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A)^2), n))};

Formula

Expansion of eta(q^2)^6 * eta(q^3) * eta(q^12) / (eta(q)^3 * eta(q^4)3 * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 3, -3, 2, 0, 3, -2, 3, 0, 2, -3, 3, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (2 + u*v) * (u*v - 1)^3 - (u - u^4) * (v - v^4).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u * (4 - 2*u + u^2) - v^3 * (1 + u + u^2).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (2 + u1 * u2) - u3 * u6 * (1 + u1 + u2).
G.f. is a period 1 Fourier series which satisfies f(-1/(144*t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A062244.
G.f.: Product_{k>0} (1 + x^(2*k-1))^3 / (1 + x^(6*k-3)).
a(n) = 3 * A132975(n) unless n=0.
Empirical: Sum_{n>=1} exp(-Pi)^(n-1)*a(n) = (-2 + 2*sqrt(3))^(1/3). - Simon Plouffe, Feb 20 2011
a(n) ~ exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
It appears that the g.f. A(x) = F(x)^3, where F(x) = exp( Sum_{n >= 0} x^(3*n+1)/((3*n + 1)*(1 - (-1)^(n+1)*x^(3*n+1))) + x^(3*n+2)/((3*n + 2)*(1 - (-1)^n*x^(3*n + 2))) ). Cf. A273845. - Peter Bala, Dec 23 2021