cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A062244 McKay-Thompson series of class 36B for the Monster group.

Original entry on oeis.org

1, -1, 1, 1, -1, 0, 1, -2, 0, 2, -3, 1, 4, -4, 1, 4, -6, 1, 5, -8, 1, 8, -10, 2, 11, -14, 4, 14, -19, 4, 17, -24, 4, 23, -31, 6, 31, -40, 9, 38, -50, 10, 46, -63, 11, 60, -79, 16, 77, -98, 21, 92, -122, 24, 112, -150, 28, 140, -183, 36, 173, -224, 46, 208, -273, 54, 249, -329, 62, 304, -396, 78, 370, -478, 98
Offset: 0

Views

Author

N. J. A. Sloane, Jul 01 2001

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + x^2 + x^3 - x^4 + x^6 - 2*x^7 + 2*x^9 - 3*x^10 + x^11 + ...
T36B = 1/q - q^2 + q^5 + q^8 - q^11 + q^17 - 2*q^20 + 2*q^26 - 3*q^29 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := (-1)^n SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^3]^3 / (QPochhammer[ x] QPochhammer[ x^6]^3), {x, 0, n}]; (* Michael Somos, Aug 20 2014 *)
    A062244[n_] := SeriesCoefficient[QPochhammer[-q^3, q^6]^3/QPochhammer[-q, q^2], {q, 0, n}]; Table[A062244[n], {n,0,50}] (* G. C. Greubel, Aug 09 2017 *)
    a[ n_] := SeriesCoefficient[ 2 x^(1/3) / (EllipticTheta[ 3, 0, x^(1/3)] / EllipticTheta[ 3, 0, x^3] - 1), {x, 0, n}]; (* Michael Somos, Aug 10 2017 *)
    a[ n_] := SeriesCoefficient[ x^(1/3) (1 + EllipticTheta[2, Pi/4, x^(1/6)] / EllipticTheta[2, Pi/4, x^(3/2)]), {x, 0, n}]; (* Michael Somos, Aug 10 2017 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[3, 0, x^3]/(QPochhammer[ -x, x^6] QPochhammer[ -x^5, x^6] QPochhammer[ x^6]), {x, 0, n}]; (* Michael Somos, Aug 10 2017 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^6 / (eta(x^2 + A)^2 * eta(x^3 + A)^3 * eta(x^12 + A)^3), n))}; /* Michael Somos, Jan 09 2005 */

Formula

Expansion of a Hauptmodul for Gamma'_0(18).
G.f.: Product_{k>0} (1 + x^(6*k - 3))^3 / (1 + x^(2*k - 1)). - Michael Somos, Mar 17 2004
Expansion of q^(1/3) * eta(q) * eta(q^4) * eta(q^6)^6 / (eta(q^2)^2 * eta(q^3)^3 * eta(q^12)^3) in powers of q.
Given g.f. A(x), then B(q) = A(q^3) /q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u*v^4 - u^3*v^3 - 3*u^2*v^2 + v*u^4 + 4*u*v - 2. - Michael Somos, Mar 17 2004
Expansion of chi(x^3)^3 / chi(x) = f(-x, x^2) / psi(-x^3) = phi(x^3) / f(x, x^5) in powers of x where phi(), psi(), chi() are Ramanujan theta functions and f(, ) is Ramanujan's general theta function. - Michael Somos, Aug 10 2017
Euler transform of period 12 sequence [-1, 1, 2, 0, -1, -2, -1, 0, 2, 1, -1, 0, ...]. - Michael Somos, Sep 17 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132972.
a(n) = (-1)^n * A062242(n). a(2*n) = A132179(n). a(2*n + 1) = - A092848(n).
Convolution inverse of A128111.

A273845 Expansion of Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^3 in powers of x.

Original entry on oeis.org

1, 3, 9, 21, 48, 99, 198, 375, 693, 1236, 2160, 3681, 6168, 10140, 16434, 26235, 41376, 64449, 99342, 151530, 229032, 343068, 509760, 751509, 1099998, 1598925, 2309274, 3314541, 4729920, 6711993, 9474624, 13306506, 18598437, 25874460, 35838288, 49427640, 67892592
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2016

Keywords

Examples

			G.f.: 1 + 3*x + 9*x^2 + 21*x^3 + 48*x^4 + 99*x^5 + 198*x^6 + ...
		

Crossrefs

Expansion of Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^k in powers of x: A015128 (k=2), this sequence (k=3), A274327 (k=4), A277212 (k=5), A277283 (k=6), A160539 (k=7).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(3*k))/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
    (QPochhammer[x^3, x^3]/QPochhammer[x, x]^3 + O[x]^40)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
  • PARI
    first(n)=my(x='x); Vec(prod(k=1, n, (1-x^(3*k))/(1-x^k)^3, 1+O(x^(n+1)))) \\ Charles R Greathouse IV, Nov 07 2016
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q^3)/eta(q)^3)} \\ Altug Alkan, Mar 20 2018

Formula

G.f.: Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^3.
a(n) ~ exp(4*Pi*sqrt(n)/3) / (9*sqrt(2)*n^(5/4)). - Vaclav Kotesovec, Nov 10 2016
a(0) = 1, a(n) = (3/n)*Sum_{k=1..n} A078708(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 29 2017
It appears that the g.f. A(x) = F(x)^3, where F(x) = exp( Sum_{n >= 0} x^(3*n+1)/((3*n + 1)*(1 - x^(3*n+1))) + x^(3*n+2)/((3*n + 2)*(1 - x^(3*n + 2))) ). Cf. A132972. - Peter Bala, Dec 23 2021

A132975 Expansion of q * psi(-q^9) / psi(-q) in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 10, 12, 15, 20, 26, 32, 39, 50, 63, 76, 92, 114, 140, 168, 201, 244, 295, 350, 415, 496, 591, 696, 818, 967, 1140, 1332, 1554, 1820, 2126, 2468, 2861, 3324, 3855, 4448, 5126, 5916, 6816, 7824, 8970, 10292, 11793, 13471, 15372, 17548
Offset: 1

Views

Author

Michael Somos, Sep 07 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + q^2 + q^3 + 2*q^4 + 3*q^5 + 4*q^6 + 5*q^7 + 7*q^8 + 10*q^9 + ...
		

Crossrefs

Cf. A128129, A128640, A132302, A132972, A132976. Essentially the same as A213267.

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1+x^k) * (1-x^(9*k)) * (1+x^(18*k)) / (1-x^(4*k)),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, q^(9/2)] / EllipticTheta[ 2, Pi/4, q^(1/2)], {q, 0, n}]; (* Michael Somos, Oct 31 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^9 + A) * eta(x^36 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^18 + A)), n))};

Formula

Expansion of eta(q^2) * eta(q^9) * eta(q^36) / (eta(q) * eta(q^4) * eta(q^18)) in powers of q.
Euler transform of period 36 sequence [ 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1 * u2 - (1 + u1 + u2) * (u3 + u6 + 3 * u3 * u6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (1/3) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132976.
G.f.: x * Product_{k>0} P(3,x^k) * P(9,x^k) * P(12,x^k) * P(36,x^k) where P(n,x) is the n-th cyclotomic polynomial.
3 * a(n) = A132972(n) unless n=0. a(2*n) = A128129(n). a(2*n + 1) = A132302(n). a(3*n) = A128640(n). Convolution inverse of A132976.
a(n) ~ exp(2*Pi*sqrt(n)/3) / (6 * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015

A141094 Expansion of b(q) / b(q^2) in powers of q where b() is a cubic AGM theta function.

Original entry on oeis.org

1, -3, 3, -3, 6, -9, 12, -15, 21, -30, 36, -45, 60, -78, 96, -117, 150, -189, 228, -276, 342, -420, 504, -603, 732, -885, 1050, -1245, 1488, -1773, 2088, -2454, 2901, -3420, 3996, -4662, 5460, -6378, 7404, -8583, 9972, -11565, 13344, -15378, 17748, -20448
Offset: 0

Views

Author

Michael Somos, Jun 04 2008, Aug 12 2009

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
For n >= 1, a(n)/3 is a weighted count of overpartitions with restricted odd differences. Namely, the number of overpartitions of n counted with weight (-1)^(the largest part) and such that: (i) the difference between successive parts may be odd only if the larger part is overlined and (ii) the smallest part of the overpartition is odd and overlined. - Jeremy Lovejoy, Aug 07 2015

Examples

			G.f. = 1 - 3*q + 3*q^2 - 3*q^3 + 6*q^4 - 9*q^5 + 12*q^6 - 15*q^7 + 21*q^8 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember:
          `if`(n=0, 1, add(add(d*[0, -3, 0, -2, 0, -3]
          [irem(d, 6)+1], d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^3 QPochhammer[ -x^3, x^3], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
    a[n_] := a[n] = If[n==0, 1, Sum[Sum[d{0, -3, 0, -2, 0, -3}[[Mod[d, 6]+1]], {d, Divisors[j]}] a[n-j], {j, 1, n}]/n];
    a /@ Range[0, 60] (* Jean-François Alcover, Jan 01 2021, after Alois P. Heinz *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A)), n))};

Formula

Expansion of chi(-q)^3 / chi(-q^3) in powers of q where chi() is a Ramanujan theta function.
Expansion of eta(q)^3 * eta(q^6) / (eta(q^2)^3 * eta(q^3)) in powers of q.
Euler transform of period 6 sequence [ -3, 0, -2, 0, -3, 0, ...].
G.f.: Product_{k>0} (1 - x^(2*k-1))^3 / (1 - x^(6*k-3)).
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v^2 - u * (2 - u*v).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u * (u^2 - 2*u + 4) - v^3 * (u^2 + u + 1).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1 * (u6^2 - u2 * u3) - u6 * (u3^2 - u6*u2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A092848.
a(n) = -3 * A124243(n) unless n=0. a(n) = (-1)^n * A132972(n).
a(2*n) = A128128(n). a(2*n + 1) = - 3* A132302(n).
Convolution inverse of A128128.
Empirical: Sum_{n>=1} exp(-Pi)^(n-1)*(-1)^(n+1)*a(n) = (-2+2*3^(1/2))^(1/3). - Simon Plouffe, Feb 20 2011
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017

A294387 Expansion of chi(q^3) / chi^3(q) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -3, 6, -12, 21, -36, 60, -96, 150, -228, 342, -504, 732, -1050, 1488, -2088, 2901, -3996, 5460, -7404, 9972, -13344, 17748, -23472, 30876, -40413, 52644, -68268, 88152, -113364, 145224, -185352, 235734, -298800, 377514, -475488, 597108, -747690, 933672
Offset: 0

Views

Author

Michael Somos, Oct 29 2017

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 3*x + 6*x^2 - 12*x^3 + 21*x^4 - 36*x^5 + 60*x^6 - 96*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q, -q]^3 / QPochhammer[ q^3, -q^3], {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A)^2 / (eta(x^2 + A)^6 * eta(x^3 + A) * eta(x^12 + A)), n))};
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q)^3*eta(q^4)^3*eta(q^6)^2/(eta(q^2)^6*eta(q^3)*eta(q^12)))} \\ Altug Alkan, Mar 21 2018

Formula

Expansion of eta(q)^3 * eta(q^4)^3 * eta(q^6)^2 / (eta(q^2)^6 * eta(q^3) * eta(q^12)) in powers of q.
Expansion of (c(q) - c(q^4)) * (c(q) - 4*c(q^4)) / (c(q) + 2*c(q^4))^2 in powers of q where c(q) is a cubic AGM theta function.
Expansion of b(q^2) / b(-q) = b(q^2) / (2*b(q^4) - b(q)) in powers of q where b() is a cubic AGM theta function.
Expansion of (3*a(q^12) - a(q^4)) / (a(q) + a(q^2)) = -1/2 + 3/2*(a(-q^3) + 2*a(q^3)) / (2*a(q) + a(-q)) in powers of q where a() is a cubic AGM theta function.
Euler transform of period 12 sequence [-3, 3, -2, 0, -3, 2, -3, 0, -2, 3, -3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A128111.
G.f. A(q) = (1 - T(q)) / (1 + 2*T(q)) where T(q) = q*A128111(q^3).
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u*v) + 3*(u*v)^2 - 4*(u*v)^3 + 2*(u*v)^4 - (u^3 + v^3).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u*(1 + u + u^2) - v^3*(1 - 2*u + 4*u^2).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1 + u2 + u1*u2 - u3*u6 - 2*u1*u2*u3*u6.
G.f.: Product_{k>0} (1 + x^(6*k-3)) / (1 + x^(2*k-1))^3.
a(n) = (-1)^n * A128128(n). Convolution inverse of A132972.
a(3*n + 1) = -3 * A164270(n). a(3*n + 2) = 6 * A164271(n).
Empirical : Sum_{n>=0} a(n)/exp(Pi*n) = 1/2*(2+2*3^(1/2))^(1/3), validated up to 1000 digits. - Simon Plouffe, May 06 2023
Showing 1-5 of 5 results.