cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A092848 Expansion of reciprocal of Hauptmodul for Gamma_0(18).

Original entry on oeis.org

1, -1, 0, 2, -2, -1, 4, -4, -1, 8, -8, -2, 14, -14, -4, 24, -23, -6, 40, -38, -10, 63, -60, -16, 98, -92, -24, 150, -140, -36, 224, -208, -54, 329, -304, -78, 478, -440, -112, 684, -627, -160, 968, -884, -224, 1358, -1236, -312, 1884, -1710, -432, 2592, -2346, -590, 3540, -3196, -801, 4796, -4320, -1082, 6454
Offset: 0

Views

Author

Michael Somos, Mar 07 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - x + 2*x^3 - 2*x^4 - x^5 + 4*x^6 - 4*x^7 - x^8 + 8*x^9 + ...
G.f. = q - q^4 + 2*q^10 - 2*q^13 - q^16 + 4*q^19 - 4*q^22 - q^25 + 8*q^28 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 345 Entry 1(i).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 1, n, 2}] / Product[ 1 - x^k, {k, 3, n, 6}]^3, {x, 0, n}]; (* Michael Somos, Dec 07 2013 *)
    a[ n_] := SeriesCoefficient[  QPochhammer[ x, x^2] / QPochhammer[ x^3, x^6]^3, {x, 0, n}]; (* Michael Somos, Dec 07 2013 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^3 / (eta(x^2 + A) * eta(x^3 + A)^3), n))}; /* Michael Somos, Dec 07 2013 */
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A = sqrt(A + (x*A^2)^2) - x*A^2); polcoeff(A, n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=0, (n-1)\2, (1 - x^(2*k + 1))^if(k%3==1, -2, 1), 1 + x * O(x^n)), n))};

Formula

Expansion of chi(-q) / chi(-q^3)^3 where chi() is a Ramanujan theta function.
Expansion of q^(-1/3) * c(q^2) / c(q) where c() is a cubic AGM theta function. - Michael Somos, Oct 04 2006
Expansion of q^(-1/3) * eta(q) * eta(q^6)^3 / (eta(q^2) * eta(q^3)^3) in powers of q.
Euler transform of period 6 sequence [-1, 0, 2, 0, -1, 0, ...].
Given g.f. A(x), then B(q) = q * A(q^3) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^2 - v + 2*u*v^2.
Given g.f. A(x), then B(q) = q * A(q^3) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (v^3 - v^2 + v) - u^3 * (1 + 2*v + 4*v^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A141094. - Michael Somos, Dec 07 2013
G.f.: Product_{k>0} (1 - x^(2*k - 1)) / (1 - x^(6*k - 3))^3.
G.f.: 1 / (1 + (x + x^2) / (1 + (x^2 + x^4) / (1 + (x^3 + x^6) / ...))).
a(n) = A062242(2*n + 1) = (-1)^n * A128111(n). Convolution inverse of A062242.
a(2*n + 1) = - A216046(n). Convolution square is A216046. - Michael Somos, Dec 07 2013
G.f.: T(0), where T(k) = 1 - (x^(k+1)+x^(2*k+2))/((x^(k+1)+x^(2*k+2))+1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 14 2013

A128128 Expansion of chi(-q^3) / chi^3(-q) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 3, 6, 12, 21, 36, 60, 96, 150, 228, 342, 504, 732, 1050, 1488, 2088, 2901, 3996, 5460, 7404, 9972, 13344, 17748, 23472, 30876, 40413, 52644, 68268, 88152, 113364, 145224, 185352, 235734, 298800, 377514, 475488, 597108, 747690, 933672, 1162824
Offset: 0

Views

Author

Michael Somos, Feb 15 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 3*q + 6*q^2 + 12*q^3 + 21*q^4 + 36*q^5 + 60*q^6 + 96*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^3 QPochhammer[ q^3] / (QPochhammer[ q]^3 QPochhammer[ q^6]), {q, 0, n}]; (* Michael Somos, Feb 19 2015 *)
    nmax=60; CoefficientList[Series[Product[(1-x^(2*k))^3 * (1-x^(3*k)) / ((1-x^k)^3 * (1-x^(6*k))),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A) / (eta(x + A)^3 * eta(x^6 + A)), n))};

Formula

Expansion of eta(q^2)^3 * eta(q^3) / (eta(q)^3 * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [ 3, 0, 2, 0, 3, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 + v - 2*u*v^2.
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u + u^2 + u^3) - v^3*(1 - 2*u + 4*u^2).
G.f. A(x) satisfies 0 = f(A(x), A(x^5)) where f(u, v) = u^6 + v^6 - 16*u^5*v^5 + 20*u^4*v^4 + 10*u^2*v^2*(u^3 + v^3) - 20*u^3*v^3 - 5*u*v*(u^3 + v^3) + 5*u^2*v^2 - u*v.
Expansion of b(q^2) / b(q) in powers of q where b() is a cubic AGM theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A062242.
a(n) = 3*A128129(n) unless n=0.
Convolution inverse of A141094. - Michael Somos, Feb 19 2015
a(n) ~ exp(2*sqrt(2*n)*Pi/3) / (2^(7/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015

A242405 Expansion of (b(q) / b(q^2))^2 in powers of q where b() is a cubic AGM theta function.

Original entry on oeis.org

1, -6, 15, -24, 39, -72, 123, -192, 294, -456, 693, -1008, 1452, -2100, 2991, -4176, 5781, -7992, 10950, -14808, 19908, -26688, 35541, -46944, 61692, -80826, 105366, -136536, 176208, -226728, 290565, -370704, 471318, -597600, 755217, -950976, 1193988
Offset: 0

Views

Author

Michael Somos, May 13 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 6*q + 15*q^2 - 24*q^3 + 39*q^4 - 72*q^5 + 123*q^6 - 192*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x, x^2]^3 / QPochhammer[ x^3, x^6])^2, {x, 0, n}];
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A)))^2, n))};

Formula

Expansion of (chi(-q)^3 / chi(-q^3))^2 in powers of q where chi() is a Ramanujan theta function.
Expansion of (eta(q)^3 * eta(q^6) / (eta(q^2)^3 * eta(q^3)))^2 in powers of q.
Euler transform of period 6 sequence [ -6, 0, -4, 0, -6, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = 4 g(t) where q = exp(2 Pi i t) and g() is g.f. for A216046.
G.f.: Product_{k>0} ((1 - x^(2*k-1))^3 / (1 - x^(6*k-3)))^2.
Convolution square of A141094.
a(n) ~ (-1)^n * exp(2*Pi*sqrt(2*n)/3) / (2^(3/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Nov 16 2017

A261035 A weighted count of the number of overpartitions of n with restricted odd differences.

Original entry on oeis.org

1, -1, -1, -1, 2, -1, 4, -5, 7, -8, 10, -15, 18, -22, 26, -37, 46, -53, 66, -84, 104, -122, 148, -183, 224, -263, 312, -379, 454, -531, 626, -750, 887, -1034, 1208, -1428, 1672, -1936, 2250, -2633, 3062, -3529, 4076, -4728, 5460, -6264, 7196, -8290, 9520, -10875, 12431, -14238
Offset: 0

Views

Author

Jeremy Lovejoy, Aug 07 2015

Keywords

Comments

The number of overpartitions of n counted with weight (-1)^(the largest part) and such that: (i) the difference between successive parts may be odd only if the larger part is overlined and (ii) if the smallest part of the overpartition is odd then it is overlined.

Crossrefs

Cf. A260890. Equals the convolution of A141094 and A260984.

Formula

G.f.: (Product_{n >= 1} (1+q^(3*n))/(1+q^n)^3) * (1 + 2*Sum_{n >= 1} q^(n*(n+1)/2)*(1+q)^2*(1+q^2)^2*...*(1+q^(n-1))^2*(1+q^n)/((1+q^3)*(1+q^6)*...*(1+q^(3*n)))).
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n)/3) / (2 * 3^(3/2) * n^(3/4)). - Vaclav Kotesovec, Jun 12 2019

A261037 The number of overpartitions of n with restricted odd differences and smallest part both odd and overlined.

Original entry on oeis.org

1, 1, 3, 4, 7, 10, 17, 23, 36, 48, 73, 96, 140, 182, 259, 334, 463, 592, 806, 1024, 1370, 1728, 2281, 2860, 3727, 4646, 5991, 7430, 9487, 11706, 14822, 18205, 22870, 27966, 34890, 42492, 52670, 63896, 78743, 95178, 116659, 140516, 171380, 205750
Offset: 1

Views

Author

Jeremy Lovejoy, Aug 07 2015

Keywords

Comments

The number of overpartitions of n such that: (i) the difference between successive parts may be odd only if the larger part is overlined and (ii) the smallest part of the overpartition is both odd and overlined.

Crossrefs

Formula

G.f.: 1 + 3*Sum_{n >= 1} a(n)*q^n = (Product_{n >= 1} (1-q^(3*n))/((1-q^n)*(1-q^(2*n)))) * (1 + 2*Sum_{n >= 1} q^(n*(n+1)/2)*(1-q^2)*(1-q^4)*...*(1-q^(2*n-2))*(1-q^n)/((1-q^3)*(1-q^6)*...*(1-q^(3*n)))) = A260890(q)*A260983(q).
Showing 1-5 of 5 results.