cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A215711 Expansion of a(q) * b(q)^3 in powers of q where a(), b() are cubic AGM theta functions.

Original entry on oeis.org

1, -3, -27, 159, -219, -378, 1431, -1032, -1755, 4533, -3402, -3996, 11607, -6594, -9288, 20034, -14043, -14742, 40797, -20580, -27594, 54696, -35964, -36504, 93015, -47253, -59346, 122631, -75336, -73170, 180306, -89376, -112347, 211788, -132678, -130032
Offset: 0

Views

Author

Michael Somos, Aug 21 2012

Keywords

Examples

			G.f. = 1 - 3*q - 27*q^2 + 159*q^3 - 219*q^4 - 378*q^5 + 1431*q^6 - 1032*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[(1 + 9*(eta[q^9]/eta[q])^3)*(eta[q]^3/eta[q^3])^4, {q, 0, 50}], q] (* G. C. Greubel, Aug 10 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 + 9 * x * (eta(x^9 + A) / eta(x + A))^3) * (eta(x + A)^3 / eta(x^3 + A))^4, n))}

Formula

Expansion of (1 + 9 * q * (eta(q^9) / eta(q))^3) * (eta(q)^3 / eta(q^3))^4 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 3^5 (t/i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A198956.
G.f.: 1 - 3 * (Sum_{k>0} k^3 * x^k / (1 - x^k) - 3 * (3*k)^3 * x^(3*k) / (1 - x^(3*k))).
Convolution of A215690 and A133078. Convolution of A004016 and A109041.

A320677 Expansion of s(q)^6 where s() is cubic AGM theta functions.

Original entry on oeis.org

1, -18, 135, -504, 657, 2052, -10071, 12384, 20277, -83610, 72090, 122040, -355581, 245124, 379512, -1050624, 770589, 966492, -2700081, 1724616, 2287062, -5636880, 3616164, 4471632, -11385657, 6820722, 8554194, -19963440, 12302568, 14113332, -34631226, 19737936
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2018

Keywords

Comments

Cubic AGM theta functions: r(q) (see A004016), s(q) (A005928), t(q) (A005882).

Crossrefs

s(q)^m: A005928 (m=1), A242874 (m=2), A109041 (m=3), A133078 (m=4), this sequence (m=6).

Formula

Expansion of (eta(q)^3/eta(q^3))^6 in powers of q.
Showing 1-2 of 2 results.