A133092 Row sums of triangle A133091.
1, 4, 6, 16, 15, 36, 28, 64, 45, 100, 66, 144, 91, 196, 120, 256, 153, 324, 190, 400, 231, 484, 276, 576, 325, 676, 378, 784, 435, 900, 496, 1024, 561, 1156, 630, 1296, 703, 1444, 780, 1600, 861, 1764, 946, 1936, 1035, 2116, 1128, 2304, 1225, 2500, 1326, 2704
Offset: 1
Examples
a(4) = 16 = sum of row 4 terms of triangle A133091: (2 + 4 + 6 + 4). a(4) = 16 = 4^2. a(7) = 28 = A000384(4), where A000384 = (1, 6, 15, 28, 45, 66, 91, ...).
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
Programs
-
Magma
[(n/4)*(3*n+(n-1)*(-1)^n+1): n in [1..50]]; // G. C. Greubel, Oct 21 2017
-
Mathematica
Table[(n/4)*(3*n + (n - 1)*(-1)^n + 1), {n, 48}] (* Bruno Berselli, Mar 02 2012 *)
-
PARI
for(n=1,50, print1((n/4)*(3*n+(n-1)*(-1)^n+1), ", ")) \\ G. C. Greubel, Oct 21 2017
Formula
G.f.: x*(1 + 4*x + 3*x^2 + 4*x^3)/(1-x^2)^3. - Philippe Deléham, Mar 02 2012
a(n) = (n/4)*(3*n + (n-1)*(-1)^n + 1). - Bruno Berselli, Mar 02 2012
E.g.f.: (x/4)*(x*exp(-x) + (4 + 3*x)*exp(x)). - G. C. Greubel, Oct 21 2017
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6). - Wesley Ivan Hurt, Jun 08 2021
Extensions
Corrected and extended by Philippe Deléham, Mar 02 2012
Comments