A133156 Irregular triangle read by rows: coefficients of U(n,x), Chebyshev polynomials of the second kind with exponents in decreasing order.
1, 2, 4, -1, 8, -4, 16, -12, 1, 32, -32, 6, 64, -80, 24, -1, 128, -192, 80, -8, 256, -448, 240, -40, 1, 512, -1024, 672, -160, 10, 1024, -2304, 1792, -560, 60, -1, 2048, -5120, 4608, -1792, 280, -12, 4096, -11264, 11520, -5376, 1120, -84, 1
Offset: 0
Examples
The first few Chebyshev polynomials of the second kind are 1; 2x; 4x^2 - 1; 8x^3 - 4x; 16x^4 - 12x^2 + 1; 32x^5 - 32x^3 + 6x; 64x^6 - 80x^4 + 24x^2 - 1; 128x^7 - 192x^5 + 80x^3 - 8x; 256x^8 - 448x^6 + 240x^4 - 40x^2 + 1; 512x^9 - 1024x^7 + 672x^5 - 160x^3 + 10x; ... From _Roger L. Bagula_ and _Gary W. Adamson_: (Start) 1; 2; 4, -1; 8, -4; 16, -12, 1; 32, -32, 6; 64, -80, 24, -1; 128, -192, 80, -8; 256, -448, 240, -40, 1; 512, -1024, 672, -160, 10; 1024, -2304, 1792, -560, 60, -1; (End) From _Philippe Deléham_, Dec 27 2011: (Start) Triangle (2, 0, 0, 0, 0, ...) DELTA (0, -1/2, 1/2, 0, 0, 0, 0, 0, ...) begins: 1; 2, 0; 4, -1, 0; 8, -4, 0, 0; 16, -12, 1, 0, 0; 32, -32, 6, 0, 0, 0; 64, -80, 24, -1, 0, 0, 0; (End)
Links
- Tracale Austin, Hans Bantilan, Isao Jonas and Paul Kory, The Pfaffian Transformation, Journal of Integer Sequences, Vol. 12 (2009), page 25
- P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014. - From _Tom Copeland_, Oct 11 2014
- Pantelis A. Damianou, A Beautiful Sine Formula, Amer. Math. Monthly 121 (2014), no. 2, 120-135. MR3149030
- Caglar Koca and Ozgur B. Akan, Modelling 1D Partially Absorbing Boundaries for Brownian Molecular Communication Channels, arXiv:2402.15888 [q-bio.MN], 2024. See p. 9.
- Wikipedia, Chebyshev polynomials
Crossrefs
Programs
-
Mathematica
t[n_, m_] = (-1)^m*Binomial[n - m, m]*2^(n - 2*m); Table[Table[t[n, m], {m, 0, Floor[n/2]}], {n, 0, 10}]; Flatten[%] (* Roger L. Bagula, Dec 19 2008 *)
Formula
A generating function for U(n) is 1/(1 - 2tx + t^2). Given A038207, shift down columns to allow for (1, 1, 2, 2, 3, 3, ...) terms in each row, then insert alternate signs.
T(n,m) = (-1)^m*binomial(n - m, m)*2^(n - 2*m). - Roger L. Bagula and Gary W. Adamson, Dec 19 2008
From Tom Copeland, Feb 11 2016: (Start)
Shifted o.g.f.: G(x,t) = x/(1 - 2x + tx^2).
Extensions
More terms from Philippe Deléham, Sep 12 2009
Comments