cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133209 a(n) = 4a(n-1) - 6a(n-2) + 4a(n-3), n > 3; a(0) = 3, a(1) = 2, a(2) = a(3) = 0.

Original entry on oeis.org

3, 2, 0, 0, 8, 32, 80, 160, 288, 512, 960, 1920, 3968, 8192, 16640, 33280, 66048, 131072, 261120, 522240, 1046528, 2097152, 4198400, 8396800, 16785408, 33554432, 67092480, 134184960, 268402688, 536870912, 1073807360, 2147614720
Offset: 0

Views

Author

Paul Curtz, Oct 11 2007

Keywords

Crossrefs

Programs

  • Maple
    a[0]:=3: a[1]:=2: a[2]:=0: a[3]:=0; for n from 4 to 27 do a[n]:=4*a[n-1]-6*a[n-2]+4*a[n-3] end do: seq(a[n],n=0..27); # Emeric Deutsch, Oct 14 2007
  • Mathematica
    a = {3, 2, 0, 0}; Do[AppendTo[a, 4*a[[ -1]] - 6*a[[ -2]] + 4*a[[ -3]]], {30}]; a (* Stefan Steinerberger, Oct 14 2007 *)
    LinearRecurrence[{4, -6, 4},{3, 2, 0},32] (* Ray Chandler, Sep 23 2015 *)

Formula

Sequence is identical to its fourth differences.
a(n) = 2^n + 2^[(n+3)/2]*cos((n+1)Pi/4); a(n)=2^n + (1+i)^(n+1) + (1-i)^(n+1), where i=sqrt(-1). - Emeric Deutsch, Oct 14 2007
G.f.: -(3-10*x+10*x^2)/(2*x-1)/(2*x^2-2*x+1). - R. J. Mathar, Nov 14 2007

Extensions

More terms from Stefan Steinerberger and Emeric Deutsch, Oct 14 2007