A133256 a(4*n+1) = 4*n+1, a(4*n+2) = 4*n+2, a(4*n+3) = 4*n+4, a(4*n+4) = 4*n+3.
1, 2, 4, 3, 5, 6, 8, 7, 9, 10, 12, 11, 13, 14, 16, 15, 17, 18, 20, 19, 21, 22, 24, 23, 25, 26, 28, 27, 29, 30, 32, 31, 33, 34, 36, 35, 37, 38, 40, 39, 41, 42, 44, 43, 45, 46, 48, 47, 49, 50, 52, 51, 53, 54, 56, 55, 57, 58, 60, 59, 61, 62, 64, 63, 65, 66, 68, 67, 69, 70, 72, 71
Offset: 1
Keywords
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Crossrefs
Cf. A103889.
Programs
-
Mathematica
Table[Which[Mod[n,4]==3,n+1,Divisible[n,4],n-1,True,n],{n,40}] (* or *) Partition[Range[40],4]/.{a_,b_,c_,d_}->{a,b,d,c}//Flatten (* Harvey P. Dale, Aug 29 2016 *)
Formula
From Chai Wah Wu, Sep 10 2020: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
G.f.: x*(x^4 - x^3 + 2*x^2 + x + 1)/(x^5 - x^4 - x + 1). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 - log(2)/2. - Amiram Eldar, Jan 31 2023
Extensions
Definition fixed and offset changed by Franklin T. Adams-Watters, Jan 22 2012
Comments