A133301 a(n) is the n-th pentagonal number which is the sum of two consecutive pentagonal numbers.
1, 1926, 850137, 2564464982, 1132138928657, 3415133918621062, 1507685261236261801, 4547981651299964079126, 2007805569980855008712097, 6056610836775865229750164742, 2673822786819976661810784866297, 8065673443881586606920210924732502
Offset: 1
Examples
With P(m) = m*(3*m-1)/2, a(1)=1 because a(1) = P(1) = P(0) + P(1); a(2)=1926 because P(36) = 1926 = P(25) + P(26) = 925 + 1001; a(3)=850137 because P(753) = 850137 = P(532) + P(533) = 424270 + 425867 ...
Links
- Colin Barker, Table of n, a(n) for n = 1..300
- Index entries for linear recurrences with constant coefficients, signature (1,1331714,-1331714,-1,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( x*(1+1925*x-483503*x^2+65395*x^3+22*x^4)/((1-x)*(1 -1154*x + x^2)*(1 +1154*x + x^2)) )); // G. C. Greubel, Mar 16 2019 -
Maple
a:=proc(m) if type (sqrt(18*m^2-6*m-8)/6-1/3), integer=true then m*(3*m-1)/2 else fi end : seq(a(m),m=1..100000)od; # Emeric Deutsch
-
Mathematica
# (3 # - 1)/2 &@ Select[Range[10^6], IntegerQ[Sqrt[18 #^2 - 6 # - 8]/6 - 1/3] &] (* or *) Rest@ CoefficientList[Series[x*(1+1925*x-483503*x^2+65395*x^3+22*x^4)/( (1-x)*(1 -1154*x + x^2)*(1 +1154*x + x^2)), {x, 0, 12}], x] (* Michael De Vlieger, Jul 14 2016 *)
-
PARI
Vec(x*(1+1925*x-483503*x^2+65395*x^3+22*x^4)/((1-x)*(1 -1154*x + x^2)*(1 +1154*x + x^2)) + O(x^20)) \\ Colin Barker, Oct 20 2014
-
Sage
a=(x*(1+1925*x-483503*x^2+65395*x^3+22*x^4)/((1-x)*(1 -1154*x + x^2)*(1 +1154*x + x^2))).series(x, 20).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Mar 16 2019
Formula
For odd and even indices respectively: a(n+2) = 1331714*a(n+1) - a(n) - 416160; on the odd and the even indices respectively we also have a(n+1) = 665857*a(n) - 208080 + 19618*sqrt(1152*a(n)^2 - 720*a(n) - 32).
The g.f., h(z), is such that h(z) = a(1)*z + a(2)*z^2 + ... and is given by h(z) = z*(1 + 1925*z - 483503*z^2 + 65395*z^3 + 22*z^4)/((1-z)*(1 - 1331714*z^2 + z^4)).
Extensions
Fixed typo in g.f. in formula, and more terms from Colin Barker, Oct 20 2014
Comments