A133342 Concatenation of binary expansion of n-th row of Pascal's triangle.
1, 11, 1101, 111111, 11001101001, 1101101010101011, 111011111010011111101, 111110101100011100011101011111, 110001110011100010001101110001110010001, 11001100100101010011111101111110101010010010010011
Offset: 0
Examples
a(0) = 1 because the 0th row of Pascal's triangle is 1. a(1) = 11 because the 1st row of Pascal's triangle is 1,1 which concatenates to 11. a(2) = 1101 because the 2nd row of Pascal's triangle is 1,2,1 which in binary is 1,10,1 which concatenates to 1101. a(3) = 111111 because the 3rd row of Pascal's triangle is 1,3,3,1 which in binary is 1,11,11,1 which concatenates to 111111. a(4) = 110010101001 because the 4th row of Pascal's triangle is 1,4,6,4,1 which in binary is 1,100,110,100,1 which concatenates to 11001101001. a(5) = 1101101010101011 because the 5th row of Pascal's triangle is 1,5,10,10,5,1 which in binary is 1,101,1010,1010,101,1 which concatenates to 1101101010101011. a(6) = 111011111010011111101 because the 6th row of Pascal's triangle is 1,6,15,20,15,6,1 which in binary is 1,110,1111,10100,1111,110,1 which concatenates to 111011111010011111101. The array of base k concatenations begins: k/n 0 1 2 3 4 1.| 1 11 1111 11111111 1111111111111111 2^(n-1) repetitions of 1 2.| 1 11 1101 111111 11001101001 3.| 1 11 121 110101 11120111 4.| 1 11 121 1331 11012101 5.| 1 11 121 1331 141141 6.| 1 11 121 1331 141041
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..38
Programs
-
Maple
catL := proc(L) local resul,a ; resul:=0 ; for a in L do resul := resul*10^(max(ilog10(a)+1,1))+a ; od: RETURN(resul) ; end: A133342 := proc(n) local prow,k ; prow := [1] ; for k from 1 to n do prow := [op(prow), convert(binomial(n,k),binary) ] ; od: catL(prow) ; end: seq(A133342(n),n=0..11) ; # R. J. Mathar, Jan 08 2008
-
Mathematica
FromDigits[Flatten[IntegerDigits[#,2]]]&/@Table[Binomial[n,k],{n,0,10},{k,0,n}] (* Harvey P. Dale, Apr 12 2020 *)
Formula
Extensions
Corrected and extended by R. J. Mathar, Jan 08 2008
Comments