cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A030648 Dimensions of multiples of minimal representation of complex Lie algebra E6.

Original entry on oeis.org

1, 27, 351, 3003, 19305, 100386, 442442, 1706562, 5895396, 18559580, 53965548, 146477916, 374332452, 907036326, 2096092350, 4642456390, 9895762305, 20373628275, 40639459575, 78751105875, 148599912825, 273612537900, 492502568220, 868056366060, 1500344336400
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it)

Keywords

References

  • Onishchik and Vinberg, Seminar on Lie Groups and Algebraic Groups, Springer Verlag 1990, see Table 5.

Crossrefs

Cf. A133355.

Programs

  • Magma
    A030648:= func< n | Binomial(n+8,8)*Binomial(n+11,8)/165 >;
    [A030648(n): n in [0..30]]; // G. C. Greubel, Feb 09 2025
    
  • Maple
    b:=binomial; t73:= proc(a,k) ((2*k+a)*(k+a)/(a^2)) * b(k+a-1,k)*b(k+3*a/2-1,k)/(b(k+a/2,k)); end; [seq(t73(8,k),k=0..40)];
  • Mathematica
    Table[(Binomial[n+11,3]Binomial[n+3,3]Binomial[n+8,5]^2)/517440,{n,0,30}]  (* Harvey P. Dale, May 01 2011 *)
  • SageMath
    def A030648(n): return binomial(n+8,8)*binomial(n+11,8)//165
    print([A030648(n) for n in range(31)]) # G. C. Greubel, Feb 09 2025

Formula

a(n) = (1/517440)*binomial(n+11, 3)*binomial(n+3, 3)*binomial(n+8, 5)^2.
From G. C. Greubel, Feb 09 2025: (Start)
a(n) = (1/165)*binomial(n+8,8)*binomial(n+11,8).
G.f.: (1 + 10*x + 28*x^2 + 28*x^3 + 10*x^4 + x^5)/(1-x)^17. (End)

Extensions

Edited by N. J. A. Sloane, Oct 20 2007
Showing 1-1 of 1 results.