A133466 Positive integers k for which there is exactly one integer i in {1,2,3,...,k-1} such that i*k is a square.
4, 8, 12, 20, 24, 28, 40, 44, 52, 56, 60, 68, 76, 84, 88, 92, 104, 116, 120, 124, 132, 136, 140, 148, 152, 156, 164, 168, 172, 184, 188, 204, 212, 220, 228, 232, 236, 244, 248, 260, 264, 268, 276, 280, 284, 292, 296, 308, 312, 316, 328, 332, 340, 344, 348, 356
Offset: 1
Keywords
Examples
4 is in the sequence because among the products 1*4,2*4,3*4 = 4,8,12 there is exactly one square.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a133466 n = a133466_list !! (n-1) a133466_list = map (+ 1) $ elemIndices 1 a057918_list -- Reinhard Zumkeller, Mar 27 2012
-
Magma
[k:k in [1..350]|#[m:m in [1..k-1]| IsSquare(m*k)] eq 1]; // Marius A. Burtea, Dec 03 2019
-
Mathematica
eoiQ[n_]:=Count[n*Range[n-1],?(IntegerQ[Sqrt[#]]&)]==1; Select[Range[ 400],eoiQ] (* _Harvey P. Dale, Mar 14 2015 *)
-
PARI
isok(n) = sum(k=1, n-1, issquare(k*n)) == 1; \\ Michel Marcus, Nov 29 2019
-
Python
from math import isqrt from sympy import mobius def A133466(n): def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return int(m)<<2 # Chai Wah Wu, Aug 15 2024
Formula
A057918(a(n)) = 1. - Reinhard Zumkeller, Mar 27 2012
From Peter Munn, Nov 28 2019: (Start)
a(n) = 4 * A005117(n).
(End)
Sum_{n>=1} 1/a(n)^s = zeta(s)/(4^s*zeta(2*s)), s>1. - Amiram Eldar, Sep 26 2023
Comments