A133475 Integers n such that n^3 + n^2 - 9*n + 16 is a square.
-4, -3, -1, 0, 1, 3, 5, 11, 15, 28, 47, 55, 81, 549, 1799, 8361
Offset: 1
Examples
0^3 + (-5)^2 + (-9) = 4^2, 1^3 + (-4)^2 + (-8) = 3^2, 3^3 + (-2)^2 + (-6) = 5^2
Programs
-
Magma
P
:= PolynomialRing(Integers()); {x: x in Sort([ p[1] : p in IntegralPoints(EllipticCurve(n^3 + n^2 - 9*n + 16)) ])}; -
Mathematica
ok[x_] := Reduce[{y^2 == x^3 + x^2 - 9*x + 16, y >= 0}, y, Integers] =!= False; Select[Table[x, {x, -4, 10000}], ok ] (* Jean-François Alcover, Sep 07 2011 *)
-
PARI
is(n)=issquare(n^3+n^2-9*n+16) \\ Charles R Greathouse IV, Sep 06 2016
-
Sage
EllipticCurve([0,1,0,-9,16]).integral_points()
Extensions
Edited by Max Alekseyev, Nov 13 2009
Comments