cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133476 a(n) = Sum_{k>=0} binomial(n,5*k+1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 14, 36, 93, 220, 474, 948, 1807, 3381, 6385, 12393, 24786, 50559, 103702, 211585, 427351, 854702, 1698458, 3368259, 6690150, 13333932, 26667864, 53457121, 107232053, 214978335, 430470899, 860941798, 1720537327, 3437550076, 6869397265
Offset: 0

Views

Author

Paul Curtz, Nov 29 2007

Keywords

Comments

From Gary W. Adamson, Mar 14 2009: (Start)
M^n * [1,0,0,0,0] = [A139398(n), A139761(n), A139748(n), A139714(n), a(n)]
where M = a 5 X 5 matrix [1,1,0,0,0; 0,1,1,0,0; 0,0,1,1,0; 0,0,0,1,1; 1,0,0,0,1]
Sum of terms = 2^n. Example: M^6 * [1,0,0,0,0] = [7, 15, 20, 15, 7] = 2^6 = 64. (End)
{A139398, A133476, A139714, A139748, A139761} is the difference analog of the hyperbolic functions of order 5, {h_1(x), h_2(x), h_3(x), h_4(x), h_5 (x)}. For a definition see the reference "Higher Transcendental Functions" and the Shevelev link. - Vladimir Shevelev, Jun 18 2017

References

  • A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.

Crossrefs

Cf. A049016.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n)=5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+2*a(n-5),
    seq(a(i)=i,i=0..4)},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Dec 20 2015
  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 2}, Range[0, 4], 40] (* Jean-François Alcover, Jul 10 2018 *)
  • PARI
    a(n) = sum(k=0, n\5, binomial(n,5*k+1)); \\ Michel Marcus, Dec 21 2015

Formula

a(n) = 5a(n-1) - 10a(n-2) + 10a(n-3) - 5a(n-4) + 2a(n-5).
Sequence is identical to its fifth differences.
O.g.f.: x*(x-1)^3/((2*x-1)*(x^4-2*x^3+4*x^2-3*x+1)) = (1/5)*(3*x^3-7*x^2+6*x-1)/(x^4-2*x^3+4*x^2-3*x+1)-(1/5)/(2*x-1). - R. J. Mathar, Nov 30 2007
Starting (1, 2, 3, 4, 5, 7, ...) = binomial transform of (1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, ...). - Gary W. Adamson, Jul 03 2008
a(n) = round((2/5)*(2^(n-1)+phi^n*cos(Pi*(n-2)/5))), where phi is the golden ratio, round(x) is the nearest to x integer. - Vladimir Shevelev, Jun 18 2017
a(n+m) = a(n)*H_1(m) + H_1(n)*H_2(m) + H_5(n)*H_3(m) + H_4(n)*H_4(m) + H_3(n)*H_5(m), where H_1=A139398, H_3=A139714, H_4=A139748, H_5=A139761. - Vladimir Shevelev, Jun 18 2017

Extensions

Better definition from N. J. A. Sloane, Jun 13 2008
Edited by N. J. A. Sloane, Jul 02 2008 at the suggestion of R. J. Mathar