A133480 Left 3-step factorial (n,-3)!: a(n) = (-1)^n * A008544(n).
1, -2, 10, -80, 880, -12320, 209440, -4188800, 96342400, -2504902400, 72642169600, -2324549427200, 81359229952000, -3091650738176000, 126757680265216000, -5577337931669504000, 262134882788466688000, -13106744139423334400000, 694657439389436723200000, -38900816605808456499200000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..375
Programs
-
Magma
[Round((-3)^n*Gamma(n+2/3)/Gamma(2/3)): n in [0..20]]; // G. C. Greubel, Mar 31 2019
-
Mathematica
Table[(-3)^n*Pochhammer[2/3, n], {n,0,20}] (* G. C. Greubel, Mar 31 2019 *)
-
PARI
vector(20, n, n--; round((-3)^n*gamma(n+2/3)/gamma(2/3))) \\ G. C. Greubel, Mar 31 2019
-
Sage
[(-3)^n*rising_factorial(2/3,n) for n in (0..20)] # G. C. Greubel, Mar 31 2019
Formula
a(n) = b(0)*b(1)...b(n) where b = (1,-2,-5,-8,-11,...) .
a(n) = 3^(n+1)*Sum_{k=1..n+1} stirling1(n+1,k)/3^k. - Vladimir Kruchinin, Jul 02 2011
G.f.: (1/Q(0)-1)/x where Q(k) = 1 + x*(3*k-1)/( 1 + x*(3*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 22 2013
G.f.: G(0)/(2*x) - 1/x, where G(k) = 1 + 1/(1 - x*(3*k-1)/(x*(3*k-1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
From G. C. Greubel, Mar 31 2019: (Start)
G.f.: Hypergeometric2F0(1,2/3; -; -3*x).
E.g.f.: (1+3*x)^(-2/3).
a(n) = (-3)^n*Pochhammer(2/3, n) = (-3)^n*(Gamma(n+2/3)/Gamma(2/3)). (End)
D-finite with recurrence: a(n) +(3*n-1)*a(n-1)=0. - R. J. Mathar, Jan 20 2020
Extensions
Terms a(11) onward added by G. C. Greubel, Mar 31 2019
Comments