A133481 a(1) = 1; for n > 1, a(n) is the least k such that k^n divides k! but k^(n+1) does not divide k!.
1, 6, 15, 18, 12, 32, 24, 36, 40, 45, 48, 100, 84, 60, 154, 165, 72, 96, 80, 126, 90, 135, 286, 200, 312, 264, 168, 120, 297, 189, 160, 330, 544, 210, 144, 224, 300, 385, 396, 324, 252, 680, 350, 180, 280, 748, 572, 486, 400, 405, 315, 528, 320, 336, 450, 512, 288, 240, 715
Offset: 1
Examples
a(7)=24 because 24^7|24! and smaller numbers than 24 do not divide their factorials 7 times. a(2) = 6 as 6^2|6! but 6! doesn't divide 6^(2 + 1) and 6 is the least positive integer with this property. - _David A. Corneth_, Mar 15 2019
References
- Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
- J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 251.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (terms 1..345 from T. D. Noe, terms 346..1150 from Robert G. Wilson v)
- David A. Corneth, PARI program.
- Index entries for sequences related to factorial numbers
Programs
-
Mathematica
kdn[n_]:=Module[{k=2},While[!Divisible[k!,k^n]||Divisible[k!, k^(n+1)], k++];k]; Join[{1},Array[kdn,60,2]] (* Harvey P. Dale, Feb 27 2012 *)
-
PARI
a(n)=if(n<2,1,my(k=2);while(valuation(k!,k)!=n,k++);k) \\ Charles R Greathouse IV, Feb 27 2012
-
PARI
See Corneth link \\ David A. Corneth, Mar 15 2019
Extensions
Edited by N. J. A. Sloane using material from A011777, Nov 29 2007
Comments