cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A011776 a(1) = 1; for n > 1, a(n) is defined by the property that n^a(n) divides n! but n^(a(n)+1) does not.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 5, 1, 2, 3, 3, 1, 4, 1, 4, 3, 2, 1, 7, 3, 2, 4, 4, 1, 7, 1, 6, 3, 2, 5, 8, 1, 2, 3, 9, 1, 6, 1, 4, 10, 2, 1, 11, 4, 6, 3, 4, 1, 8, 5, 9, 3, 2, 1, 14, 1, 2, 10, 10, 5, 6, 1, 4, 3, 11, 1, 17, 1, 2, 9, 4, 7, 6, 1, 19, 10, 2, 1, 13, 5, 2, 3, 8, 1, 21
Offset: 1

Views

Author

Keywords

Comments

From Stefano Spezia, Nov 08 2018: (Start)
It appears that for n > 1 a(n) = 1 iff n = 4 or a prime number (see A175787).
It appears that a(n) = 2 iff n is in A074845. (End)
Since a prime p is coprime to all positive integers less than p, a(p)=1. - Robert D. Rosales, Jun 17 2024
If n > 4 is composite then a(n) > 1. Proof: 1) If n is not a square of a prime, then n has a divisor d such that 1 < d < n/d < n, so d, n/d and n appear as different factors in n!, n^2 | n!, and therefore a(n) >= 2. 2) If n = p^2 is a square of a prime, then p, 2*p and p^2 appear as different factors in n! when p > 2, therefore a(n) >= 2 if n != 4. - Amiram Eldar, Jul 06 2024

Examples

			12^5 divides 12! but 12^6 does not so a(12) = 5.
		

References

  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 251.

Crossrefs

Diagonal of A090622.
Cf. A175787 (primes together with 4).

Programs

  • Haskell
    a011776 1 = 1
    a011776 n = length $
       takeWhile ((== 0) . (mod (a000142 n))) $ iterate (* n) n
    -- Reinhard Zumkeller, Sep 01 2012
    
  • Maple
    a := []; for n from 2 to 200 do i := 0: while n! mod n^i = 0 do i := i+1: od: a := [op(a),i-1]; od: a;
    # second Maple program:
    f:= proc(n, p) local c, k; c, k:= 0, p;
           while n>=k do c:= c+iquo(n, k); k:= k*p od; c
        end:
    a:= n-> min(seq(iquo(f(n, i[1]), i[2]), i=ifactors(n)[2])): a(1):=1:
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 04 2012
  • Mathematica
    Do[m = 1; While[ IntegerQ[ n!/n^m], m++ ]; Print[m - 1], {n, 1, 100} ]
    HighestPower[n_,p_] := Module[{r,s=0,k=1}, While[r=Floor[n/p^k]; r>0, s=s+r; k++ ];s]; SetAttributes[HighestPower,Listable]; Join[{1}, Table[{p,e}=Transpose[FactorInteger[n]]; Min[Floor[HighestPower[n,p]/e]], {n,2,100}]] (* T. D. Noe, Oct 01 2008 *)
    Join[{1},Table[IntegerExponent[n!,n],{n,2,500}]] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
    f[n_, p_] := Module[{c=0, k=p}, While[n >= k , c = c + Quotient[n, k]; k = k*p ]; c]; a[1]=1; a[n_] := Min[ Table[ Quotient[f[n, i[[1]]], i[[2]]], {i, FactorInteger[n] }]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 03 2013, after Alois P. Heinz's Maple program *)
  • PARI
    a(n)=if(n>1, valuation(n!,n), 1); \\ Charles R Greathouse IV, Apr 10 2014
    
  • PARI
    vp(n,p)=my(s); while(n\=p, s+=n); s
    a(n)=if(n==1,return(1)); my(f=factor(n)); vecmin(vector(#f~, i, vp(n,f[i,1])\f[i,2])) \\ Charles R Greathouse IV, Apr 10 2014

A011777 a(n) = least k>1 such that k^n divides k!.

Original entry on oeis.org

2, 6, 15, 18, 12, 32, 24, 36, 40, 45, 48, 100, 84, 60, 154, 165, 72, 96, 80, 126, 90, 135, 286, 200, 312, 264, 168, 120, 297, 189, 160, 330, 544, 210, 144, 224, 300, 385, 396, 324, 252, 680, 350, 180, 280, 748, 572, 486, 400, 405, 315, 528, 320, 336, 450, 512, 288, 240, 715
Offset: 1

Views

Author

Keywords

Comments

For n >= 2, least k such that A011776(k)=n.

References

  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 251.

Crossrefs

See A133481 for a better version. Cf. A011776, A011778.

A011778 Numbers k where A011776(k) grows.

Original entry on oeis.org

2, 6, 12, 24, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 480, 630, 672, 720, 1080, 1120, 1260, 1344, 1440, 1890, 2016, 2160, 2240, 2520, 2880, 3024, 3360, 3780, 4032, 4320, 5040, 6048
Offset: 1

Views

Author

Keywords

Comments

Equivalently, 2 along with numbers A092427(j) where A092427(j) > A092427(j-1), for j > 0. - Derek Orr, Apr 16 2015
Is 45 the only odd number in this sequence? - Derek Orr, Apr 16 2015
a(184) = 212837625 and a(311) = 638512875 are the only other odd terms < 10^11. - Charlie Neder, Jan 27 2019

References

  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, Wiley NY 1991.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 251.

Crossrefs

Formula

a(n) = A061769(n) + 1.
a(n) = A092427(A061770(n)). - Derek Orr, Apr 16 2015

Extensions

Corrected by Vladeta Jovovic, Dec 01 2002

A217672 Largest k such that k^n divides k!!

Original entry on oeis.org

1, 8, 16, 36, 24, 32, 60, 72, 80, 48, 135, 200, 168, 120, 297, 189, 144, 96, 160, 252, 180, 270, 539, 400, 405, 315, 336, 240, 594, 378, 192, 660, 525, 420, 288, 448, 600, 770, 320, 648, 504, 1001, 675, 360, 560, 1496, 1125, 972, 800, 810, 630, 1056, 1300, 384
Offset: 1

Views

Author

Michel Lagneau, Oct 10 2012

Keywords

Comments

Largest k such that A217467(k)=n.

Examples

			a(5)=24 because 24^5 divides 24!! but 24^6 does not divide 24!!.
		

Crossrefs

Programs

  • Mathematica
    kdn[n_]:=Module[{k=2}, While[!Divisible[k!!, k^n]||Divisible[k!!, k^(n+1)], k++]; k]; Join[{1}, Array[kdn, 60, 2]]

A306772 a(n) is the least number k such that k! is divisible by (k+1)^n but not by (k+1)^(n+1).

Original entry on oeis.org

1, 5, 14, 17, 11, 31, 23, 35, 39, 44, 47, 99, 83, 59, 153, 164, 71, 95, 79, 125, 89, 134, 285, 199, 311, 263, 167, 119, 296, 188, 159, 329, 543, 209, 143, 223, 299, 384, 395, 323, 251, 679, 349, 179, 279, 747, 571, 485, 399, 404, 314, 527, 319, 335, 449, 511, 287, 239, 714
Offset: 0

Views

Author

Jinyuan Wang, Mar 09 2019

Keywords

Comments

k+1 is not a prime.
a(n) + 1 is 17-smooth in DATA. - David A. Corneth, Mar 15 2019
But fails at n 99, 114, 125, 127, 130, 135, 143, 146, ... - Michel Marcus, Apr 30 2019

Examples

			For n = 1, 1! = 1 is not divisible by 2, 2! = 2 is not divisible by 3, 3! = 6 is not divisible by 4, 4! = 24 is not divisible by 5, and 5! = 120 is divisible by 6 but not 36. Therefore a(1) = 5. - _Michael B. Porter_, Apr 21 2019
		

Crossrefs

Programs

  • Mathematica
    Array[Block[{k = 1}, While[Nand[Mod[k!, (k + 1)^#] == 0, Mod[k!, (k + 1)^(# + 1)] != 0], k++]; k] &, 58] (* Michael De Vlieger, Mar 11 2019 *)
  • PARI
    a(n) = {my(k=1); while((k! % (k+1)^n) || !(k! % (k+1)^(n+1)), k++); k; }

Formula

a(n) = A133481(n+1) - 1.
a(n) >= A061768(n).
If n = floor((p^j-1)/(j*(p-1)))-1, a(n) <= p^j-1 for prime p. For example, (p = 2), a(n) <= 2^j-1 for n = floor((2^j-1)/j)-1 (A082482(j)-1).
Showing 1-5 of 5 results.