A133509 Numbers k such that m=1 is the only number for which the sum of digits of m^k equals m.
0, 105, 164, 186, 194, 206, 216, 231, 254, 282, 285, 302, 314, 324, 374, 386, 402, 416, 456, 468, 491, 504, 521, 552, 588, 606, 610, 615, 629, 651, 656, 657, 696, 759, 794, 830, 842, 854, 870, 903, 906, 954, 956, 981, 998, 1029, 1064, 1079, 1082, 1109, 1112, 1131
Offset: 1
Links
- Carole Dubois, Table of n, a(n) for n = 1..226 (terms 1..100 from Michael S. Branicky)
- Carole Dubois, Pin plot of A133509
Programs
-
Python
def ok(n): d, lim = 1, 1 while lim < n*9*d: d, lim = d+1, lim*10 return not any(sum(map(int, str(k**n))) == k for k in range(2, lim+1)) for k in range(195): if ok(k): print(k, end=", ") # Michael S. Branicky, Jul 06 2022
Formula
Extensions
Description improved by T. D. Noe, Nov 26 2008
Extension by T. D. Noe, Nov 26 2008
Edited by Charles R Greathouse IV, Aug 02 2010
a(1) = 0 and a(46) and beyond from Michael S. Branicky, Jul 06 2022