cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A133753 Larger of emirps (pairs) with only prime digits (A128388).

Original entry on oeis.org

73, 733, 3733, 7253, 7523, 7757, 33223, 35323, 72253, 72353, 73327, 73523, 73553, 75223, 75253, 77237, 77323, 77527, 77557, 333323, 352333, 355723, 375223, 375233, 375553, 722333, 727327, 733333, 735733, 737353, 737753, 737773, 753373, 753527, 772273, 773273, 775757, 777353, 777373
Offset: 1

Views

Author

Lekraj Beedassy, Jan 21 2008

Keywords

Crossrefs

Programs

  • Maple
    read(transforms) : isA006567 := proc(n) local digs,prev ; if isprime(n) then prev := digrev(n) ; if n <> prev and isprime(prev) then true ; else false ; fi ; else false ; fi ; end: isA128388 := proc(n) local digs ; if isA006567(n) then digs := convert(convert(n,base,10),set) ; if digs minus {2,3,5,7} = {} then true ; else false ; fi ; else false ; fi ; end: isA133753 := proc(n) if isA128388(n) then if digrev(n) < n then true; else false ; fi ; else false ; fi ; end: for n from 1 to 200000 do p := ithprime(n) ; if isA133753(p) then printf("%d, ",p) ; fi ; od: # R. J. Mathar, Jan 30 2008
  • Mathematica
    Select[(Table[(Sort/@Select[{#,IntegerReverse[#]}&/@Select[FromDigits/@Tuples[ {2,3,5,7},n],PrimeQ],AllTrue[#,PrimeQ]&])[[;;,2]]//Union,{n,2,6}]//Flatten//Union),!PalindromeQ[#]&] (* Harvey P. Dale, Sep 15 2024 *)

Formula

{p in A128388: p> A004086(p)}. - R. J. Mathar, Jan 30 2008

Extensions

Extended by Ray Chandler and R. J. Mathar, Jan 30 2008

A137834 Lesser of emirps (pairs) with a prime number of only prime digits.

Original entry on oeis.org

37, 337, 32233, 32257, 32353, 32377, 32537, 35227, 35257, 35327, 35537, 72337, 72577, 73277, 75577, 3223357, 3223537, 3225323, 3225737, 3233227, 3233533, 3235577, 3235777, 3237527, 3252377, 3253753, 3253777, 3257257, 3273527
Offset: 1

Views

Author

Lekraj Beedassy, Feb 12 2008

Keywords

Crossrefs

Cf. A137835.

Formula

Subsequence of A133554

Extensions

a(16)-a(29) from Donovan Johnson, Jun 06 2009
Showing 1-2 of 2 results.