A133560 Primes which have a partition as the sum of squares of seven consecutive primes.
1543, 3271, 4519, 7591, 9439, 11719, 23599, 39631, 45319, 51031, 56599, 90199, 151471, 173359, 210319, 222919, 235159, 261463, 313879, 367711, 402511, 459223, 478831, 499711, 610567, 634327, 732967, 760519, 819319, 883087, 939439, 968959
Offset: 1
Keywords
Examples
a(3)=4519 because 13^2 + 17^2 + 19^2 + 23^2 + 29^2 + 31^2 + 37^2 = 4519 is prime.
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..3000
Programs
-
Maple
select(isprime,[seq(add(ithprime(n+k)^2,k=0..6),n=1..80)]); # Muniru A Asiru, Jul 19 2018
-
Mathematica
b = {}; a = 2; Do[k = Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a + Prime[n + 5]^a + Prime[n + 6]^a; If[PrimeQ[k], AppendTo[b, k]], {n, 1, 100}]; b (* Second program: *) Select[Map[Total, Partition[Prime@ Range@ 80, 7, 1]^2], PrimeQ] (* Michael De Vlieger, Jul 20 2018 *)
Comments