cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133560 Primes which have a partition as the sum of squares of seven consecutive primes.

Original entry on oeis.org

1543, 3271, 4519, 7591, 9439, 11719, 23599, 39631, 45319, 51031, 56599, 90199, 151471, 173359, 210319, 222919, 235159, 261463, 313879, 367711, 402511, 459223, 478831, 499711, 610567, 634327, 732967, 760519, 819319, 883087, 939439, 968959
Offset: 1

Views

Author

Artur Jasinski, Sep 16 2007

Keywords

Comments

For sums of squares of two consecutive primes, only 2^2 + 3^2 = 13 is prime.
For sums of squares of three consecutive primes (see A133529), it seems that only 3^2 + 5^2 + 7^2 = 83 is prime.
Sums of squares of four (and all even numbers of) consecutive primes are even numbers except for 2^2 + 3^2 + 5^2 + 7^2 = 87 = 3*29, which is not prime.
For sums of squares of five of consecutive primes see A133559.
For every prime p > 3, p^2 mod 3 = 1, so the sum of the squares of any 3 such primes will be divisible by 3. - Jon E. Schoenfield, Sep 04 2023

Examples

			a(3)=4519 because 13^2 + 17^2 + 19^2 + 23^2 + 29^2 + 31^2 + 37^2 = 4519 is prime.
		

Crossrefs

Programs

  • Maple
    select(isprime,[seq(add(ithprime(n+k)^2,k=0..6),n=1..80)]); # Muniru A Asiru, Jul 19 2018
  • Mathematica
    b = {}; a = 2; Do[k = Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a + Prime[n + 5]^a + Prime[n + 6]^a; If[PrimeQ[k], AppendTo[b, k]], {n, 1, 100}]; b
    (* Second program: *)
    Select[Map[Total, Partition[Prime@ Range@ 80, 7, 1]^2], PrimeQ] (* Michael De Vlieger, Jul 20 2018 *)