A133559 Primes which have a partition as the sum of squares of five consecutive primes.
373, 653, 5381, 6701, 8069, 19541, 24821, 53549, 56909, 69389, 93581, 107741, 131837, 184901, 196661, 237821, 252509, 344021, 370661, 395069, 498989, 609269, 783701, 1055429, 1174781, 1239341, 1492637, 1576229, 1713989, 1749149, 2024261
Offset: 1
Keywords
Examples
a(1)=373 because prime(2)^2 + prime(3)^2 + prime(4)^2 + prime(5)^2 + prime(6)^2 = 3^2 + 5^2 + 7^2 + 11^2 + 13^2 = 373 is prime. [Corrected by _Jonathan Sondow_, Nov 04 2015]
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
b = {}; a = 2; Do[k = Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a; If[PrimeQ[k], AppendTo[b, k]], {n, 1, 100}]; b Select[Total/@Partition[Prime[Range[200]]^2,5,1],PrimeQ] (* Harvey P. Dale, Apr 07 2015 *)
Comments