cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A122756 Odd-indexed terms, a(n) = 2^n. Even-indexed terms, a(n) = floor(2^n+2^(n-1)).

Original entry on oeis.org

1, 2, 6, 8, 24, 32, 96, 128, 384, 512, 1536, 2048, 6144, 8192, 24576, 32768, 98304, 131072, 393216, 524288, 1572864, 2097152, 6291456, 8388608, 25165824, 33554432, 100663296, 134217728, 402653184, 536870912, 1610612736, 2147483648
Offset: 0

Views

Author

Roger L. Bagula, Sep 21 2006

Keywords

Comments

Row sums of triangle A133569. - Gary W. Adamson, Sep 16 2007

Examples

			Binary.................Decimal
1............................1
10...........................2
110..........................6
1000.........................8
11000.......................24
100000......................32
1100000.....................96
10000000...................128
110000000..................384
1000000000.................512
11000000000...............1536
100000000000..............2048
1100000000000.............6144
10000000000000............8192, etc. - _Philippe Deléham_, Mar 20 2014
		

Crossrefs

Programs

  • Magma
    [1] cat [(5*2^n-(-2)^n)/8: n in [2..40]]; // Vincenzo Librandi, Feb 10 2018
  • Mathematica
    a[n_] := If[Mod[n, 2] == 0, 2^(n + 1), 2^n + 2^(n + 1)] Table[a[n], {n, 0, 30}]
    Join[{1, 2}, LinearRecurrence[{0, 4}, {6, 8}, 40]] (* Vincenzo Librandi, Feb 10 2018 *)
  • PARI
    A122756(n)=(3-bittest(n,0))<<(n-1) \\ M. F. Hasler, Feb 09 2018
    

Formula

a(n) = 2*A084221(n-1) for all n >= 1. [Corrected by M. F. Hasler, Feb 09 2018]
a(0)=1, a(1)=2, a(2)=6, a(n)=4*a(n-2) for n>=3. G.f.: (1+2*x+2*x^2)/(1-4*x^2). - Philippe Deléham, Dec 14 2007
a(n-1) = (5*2^n - (-2)^n)/8 for n>1. - Ralf Stephan, Jul 18 2013
a(2*n) = A164908(n), a(2*n+1) = A004171(n). - Philippe Deléham, Mar 20 2014

Extensions

Edited by N. J. A. Sloane, Dec 14 2007
Showing 1-1 of 1 results.