cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A084221 a(n+2) = 4*a(n), with a(0)=1, a(1)=3.

Original entry on oeis.org

1, 3, 4, 12, 16, 48, 64, 192, 256, 768, 1024, 3072, 4096, 12288, 16384, 49152, 65536, 196608, 262144, 786432, 1048576, 3145728, 4194304, 12582912, 16777216, 50331648, 67108864, 201326592, 268435456, 805306368, 1073741824, 3221225472, 4294967296, 12884901888
Offset: 0

Views

Author

Paul Barry, May 21 2003

Keywords

Comments

Binomial transform is A060925. Binomial transform of A084222.
Sequences with similar recurrence rules: A016116 (multiplier 2), A038754 (multiplier 3), A133632 (multiplier 5). See A133632 for general formulas. - Hieronymus Fischer, Sep 19 2007
Equals A133080 * A000079. A122756 is a companion sequence. - Gary W. Adamson, Sep 19 2007

Examples

			Binary...............Decimal
1..........................1
11.........................3
100........................4
1100......................12
10000.....................16
110000....................48
1000000...................64
11000000.................192
100000000................256
1100000000...............768
10000000000.............1024
110000000000............3072, etc. - _Philippe Deléham_, Mar 21 2014
		

Crossrefs

For partial sums see A133628. Partial sums for other multipliers p: A027383(p=2), A087503(p=3), A133629(p=5).
Other related sequences: A132666, A132667, A132668, A132669.

Programs

Formula

a(n) = (5*2^n-(-2)^n)/4.
G.f.: (1+3*x)/((1-2*x)(1+2*x)).
E.g.f.: (5*exp(2*x) - exp(-2*x))/4.
a(n) = A133628(n) - A133628(n-1) for n>1. - Hieronymus Fischer, Sep 19 2007
Equals A133080 * [1, 2, 4, 8, ...]. Row sums of triangle A133087. - Gary W. Adamson, Sep 08 2007
a(n+1)-2a(n) = A000079 signed. a(n)+a(n+2)=5*a(n). First differences give A135520. - Paul Curtz, Apr 22 2008
a(n) = A074323(n+1)*A016116(n). - R. J. Mathar, Jul 08 2009
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = Sum_{k=0..n+1} A181650(n+1,k)*2^k. - Philippe Deléham, Nov 19 2011
a(2*n) = A000302(n); a(2*n+1) = A164346(n). - Philippe Deléham, Mar 21 2014

Extensions

Edited by N. J. A. Sloane, Dec 14 2007

A294090 Base-10 complementary numbers: n equals the product of the 10's complement of its digits.

Original entry on oeis.org

5, 18, 35, 50, 180, 315, 350, 500, 1800, 3150, 3500, 5000, 18000, 31500, 35000, 50000, 180000, 315000, 350000, 500000, 1800000, 3150000, 3500000, 5000000, 18000000, 31500000, 35000000, 50000000, 180000000, 315000000, 350000000, 500000000, 1800000000
Offset: 1

Views

Author

M. F. Hasler, Feb 09 2018

Keywords

Comments

The only primitive terms of the sequence, i.e., not equal to 10 times a smaller term, are 5, 18, 35 and 315.
For base 2, 3, 4 and 5, the corresponding sequences are less interesting: b = 2 yields powers of 2, A000079; b = 3 yields 4 times powers of 3, A003946 \ {1}; b = 4 yields {2, 6}*{4^k, k>=0} = A122756 = 2*A084221; b = 5 yields 8*{5^k, k>=0} = A128625 \ {1}.
See A298976 for base-6 complementary numbers. Base 7 yields {12, 120}*{7^k, k>=0}, cf. A298977. The linked web page (in French) gives also examples for base-100 complementary numbers, e.g., 198 = (100 - 1)*(100 - 98), 1680 = (100 - 16)*(100 - 80), ..., and for base-1000 complementary numbers.

Examples

			5 = (10-5), therefore 5 is in the sequence.
18 = (10-1)*(10-8), therefore 18 is in the sequence.
35 = (10-3)*(10-5), therefore 35 is in the sequence.
315 = (10-3)*(10-1)*(10-5), therefore 315 is in the sequence.
If x is in the sequence, then 10*x = concat(x,0) = x*(10-0) is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,10},{5,18,35,50,180,315},40] (* Harvey P. Dale, Mar 02 2024 *)
  • PARI
    is(n,b=10)={n==prod(i=1,#n=digits(n,b),b-n[i])}
    
  • PARI
    a(n)=if(n>6,a((n-3)%4+3)*10^((n-3)\4),[5,18,35,50,180,315][n])
    
  • PARI
    Vec(x*(5 + 18*x + 35*x^2 + 50*x^3 + 130*x^4 + 135*x^5) / (1 - 10*x^4) + O(x^60)) \\ Colin Barker, Feb 09 2018

Formula

a(n+4) = 10 a(n) for all n >= 3.
G.f.: x*(5 + 18*x + 35*x^2 + 50*x^3 + 130*x^4 + 135*x^5) / (1 - 10*x^4). - Colin Barker, Feb 09 2018

A349326 a(n) is the number of prime powers (not including 1) that are bi-unitary divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 1, 3, 1, 5, 2, 2, 2, 2, 1, 2, 2, 4, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 2, 4, 2, 2, 1, 3, 1, 2, 2, 5, 2, 3, 1, 2, 2, 3, 1, 4, 1, 2, 2, 2, 2, 3, 1, 4, 3, 2, 1, 3, 2, 2, 2, 4, 1, 3, 2, 2, 2, 2, 2, 6, 1, 2, 2, 2, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Amiram Eldar, Nov 15 2021

Keywords

Comments

The total number of prime powers (not including 1) that divide n is A001222(n).
The least number k such that a(k) = m is A122756(m).

Examples

			12 has 4 bi-unitary divisors, 1, 3, 4 and 12. Two of these divisors, 3 and 4 = 2^2 are prime powers. Therefore a(12) = 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], e, e - 1]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecsum(apply(x -> if(x%2, x, x-1), factor(n)[, 2])); \\ Amiram Eldar, Sep 29 2023

Formula

Additive with a(p^e) = e if e is odd, and e-1 if e is even.
a(n) <= A001222(n), with equality if and only if n is an exponentially odd number (A268335).
a(n) <= A286324(n) - 1, with equality if and only if n is a prime power (including 1, A000961).
a(n) = A001222(n) - A162641(n). - Amiram Eldar, May 18 2023
From Amiram Eldar, Sep 29 2023: (Start)
a(n) = A001222(A350390(n)) (the number of prime factors of the largest exponentially odd number dividing n, counted with multiplicity).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B_2 - C), where B_2 = A083342 and C = A179119. (End)

A133569 A133566 * A007318 as infinite lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 1, 3, 3, 1, 2, 7, 9, 5, 1, 1, 5, 10, 10, 5, 1, 2, 11, 25, 30, 20, 7, 1, 1, 7, 21, 35, 35, 21, 7, 1, 2, 15, 49, 91, 105, 77, 35, 9, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 16 2007

Keywords

Comments

Row sums = A122756: (1, 2, 6, 8, 24, 32, 96, ...).
With offset (0,4); triangle T(n,k), 0 <= k <= n, given by [1,1,-3,1,0,0,0,0,0,0,0,...] DELTA [1,0,-2,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 15 2007

Examples

			First few rows of the triangle:
  1;
  1,  1;
  2,  3,  1;
  1,  3,  3,  1;
  2,  7,  9,  5,  1;
  1,  5, 10, 10,  5,  1;
  2, 11, 25, 30, 20,  7,  1;
  1,  7, 21, 35, 35, 21,  7,  1;
  ...
		

Crossrefs

Formula

T(n,k) = T(n-2,k) + 2*T(n-2,k-1) + T(n-2,k-2), T(0,0) = 1, T(1,0) = T(1,1) = 1, T(2,0) = 2, T(2,1) = 3, T(2,2) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Sep 17 2014
G.f.: (-1-x-x*y-x^2-x^2*y)/((x*y+1+x)*(-1+x+x*y)). - R. J. Mathar, Aug 12 2015
Showing 1-4 of 4 results.