A133585 Expansion of x - x^2*(2*x+1)*(x^2-2) / ( (x^2-x-1)*(x^2+x-1) ).
1, 2, 4, 5, 10, 13, 26, 34, 68, 89, 178, 233, 466, 610, 1220, 1597, 3194, 4181, 8362, 10946, 21892, 28657, 57314, 75025, 150050, 196418, 392836, 514229, 1028458, 1346269, 2692538, 3524578, 7049156, 9227465, 18454930, 24157817
Offset: 1
Examples
a(4) = F(5) = 5. a(5) = 2*a(4) = 2*5 = 10.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-1).
Programs
-
Maple
A133585aux := proc(n,k) add(A133566(n,j)*A133080(j,k),j=k..n) ; end proc: A000045 := proc(n) combinat[fibonacci](n) ; end proc: A133585 := proc(n) add(A133585aux(n,j)*A000045(j),j=0..n) ; end proc: # R. J. Mathar, Jun 20 2015
-
Mathematica
CoefficientList[Series[1 - x (2 x + 1) (x^2 - 2)/((x^2 - x - 1) (x^2 + x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 21 2015 *) LinearRecurrence[{0,3,0,-1},{1,2,4,5,10},40] (* Harvey P. Dale, Mar 04 2019 *)
-
PARI
a(n)=if(n>1,([0,1,0,0;0,0,1,0;0,0,0,1;-1,0,3,0]^(n-2)*[2;4;5;10])[1,1],1) \\ Charles R Greathouse IV, Jun 20 2015
Formula
Extensions
Previous name corrected and new name from R. J. Mathar, Jun 20 2015
Comments