cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A133586 Expansion of x*(1+2*x)/( (x^2-x-1)*(x^2+x-1) ).

Original entry on oeis.org

1, 2, 3, 6, 8, 16, 21, 42, 55, 110, 144, 288, 377, 754, 987, 1974, 2584, 5168, 6765, 13530, 17711, 35422, 46368, 92736, 121393, 242786, 317811, 635622, 832040, 1664080, 2178309, 4356618, 5702887, 11405774, 14930352, 29860704, 39088169, 78176338, 102334155
Offset: 1

Views

Author

Gary W. Adamson, Sep 18 2007

Keywords

Comments

For n>1 A133585(n) + a(n) = A000032(n+1).

Examples

			a(5) = F(6) = 8.
a(6) = 2*a(5) = 2*8 = 16.
		

Crossrefs

Cf. A001906 (bisection), A025169 (bisection), A000032, A133586.

Programs

  • Maple
    A133586aux := proc(n,k)
        add(A133080(n,j)*A133566(j,k),j=k..n) ;
    end proc:
    A000045 := proc(n)
        combinat[fibonacci](n) ;
    end proc:
    A133586 := proc(n)
        add(A133586aux(n,j)*A000045(j),j=0..n) ;
    end proc: # R. J. Mathar, Jun 20 2015
  • Mathematica
    CoefficientList[Series[(1 + 2 x)/((x^2 - x - 1) (x^2 + x - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 21 2015 *)
    LinearRecurrence[{0,3,0,-1},{1,2,3,6},40] (* Harvey P. Dale, Dec 10 2017 *)
  • PARI
    {a(n) = if( n%2, fibonacci(n+1), 2*fibonacci(n))}; /* Michael Somos, Jun 20 2015 */
    
  • PARI
    Vec(x*(1+2*x)/((x^2-x-1)*(x^2+x-1)) + O(x^50)) \\ Colin Barker, Mar 28 2016

Formula

Equals A133080 * A133566 * A000045, where A133080 and A133566 are infinite lower triangular matrices and the Fibonacci sequence as a vector (previous definition).
For odd-indexed terms, a(n) = F(n+1). For even-indexed terms, a(n) = 2*a(n-1).
For n>1 A133585(n) + a(n) = A000032(n+1).
a(n) = A147600(n) + 2*A147600(n-1). - R. J. Mathar, Jun 20 2015
a(n) = (2^(-2-n)*((1-sqrt(5))^n*(-5+sqrt(5)) - (-1-sqrt(5))^n*(-3+sqrt(5)) - (-1+sqrt(5))^n*(3+sqrt(5)) + (1+sqrt(5))^n*(5+sqrt(5))))/sqrt(5). - Colin Barker, Mar 28 2016

Extensions

New definition and A-number in previous definition corrected by R. J. Mathar, Jun 20 2015

A134032 Rectangular array T(n,k) read by antidiagonals. Row n consists of numbers k for which {k*tau}

Original entry on oeis.org

1, 2, 1, 5, 2, 1, 13, 4, 2, 1, 34, 5, 3, 2, 1, 89, 10, 4, 3, 2, 1, 233, 13, 5, 4, 3, 2, 1, 610, 26, 7, 5, 4, 3, 2, 1, 1597, 34, 10, 7, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Oct 02 2007

Keywords

Comments

Each row is a subsequence of every row after it. Is row 2 = A133585?

Examples

			Northwest corner:
1 2 5 13 34 89
1 2 4 5 10 13
1 2 3 4 5 7
		

Crossrefs

Cf. A134033.
Showing 1-2 of 2 results.