A133608 Numbers n such that the sum of digits of n-th semiprime equals sum of digits of n.
5, 6, 19, 40, 41, 42, 70, 71, 85, 89, 128, 148, 149, 166, 199, 246, 257, 271, 285, 327, 339, 346, 448, 449, 469, 484, 566, 592, 605, 617, 634, 643, 644, 676, 682, 694, 710, 713, 719, 740, 748, 751, 752, 753, 782, 793, 794, 797, 798, 815, 890, 901, 905, 961
Offset: 1
Examples
a(1) = 5 because semiprime(5) = 14, whose sum of digits is 5, the same as its index as a semiprime.
Programs
-
Mathematica
a = {}; c = 0; For[n = 4, n < 10000, n++, If[Sum[FactorInteger[n][[i, 2]], {i, 1, Length[FactorInteger[n]]}] == 2, c++; If[Plus @@ IntegerDigits[c] == Plus @@ IntegerDigits[n], AppendTo[a, c]]]]; a (* Stefan Steinerberger, Dec 29 2007 *) SemiPrimePi[n_] := Sum[ PrimePi[n/Prime@i] - i + 1, {i, PrimePi@ Sqrt@n}]; SemiPrime[n_] := Block[{e = Floor[Log[2, n] + 1], a, b}, a = 2^e; Do[b = 2^p; While[SemiPrimePi@a < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Select[Range@ 1000, fQ@# &] (* Robert G. Wilson v *) nn=5000;With[{sp=Select[Range[nn],PrimeOmega[#]==2&]},Select[Range[ Length[sp]], Total[ IntegerDigits[sp[[#]]]] ==Total[ IntegerDigits[#]]&]] (* Harvey P. Dale, Oct 15 2012 *)
Extensions
Corrected and extended by Stefan Steinerberger and Robert G. Wilson v, Dec 29 2007
Comments