cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133708 First differences of A047835.

Original entry on oeis.org

0, 0, 1, 69, 1694, 22932, 208152, 1413720, 7697052, 35194302, 139687119, 493127635, 1577331756, 4637757488, 12679063488, 32529562560, 78917794128, 182184724908, 402332471541, 853769650041, 1747606106554, 3462012537060, 6656436729800, 12452933493000
Offset: 1

Views

Author

Peter Bala, Sep 21 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0,0,1},Differences[Table[Product[Times@@((i+Range[4,7])/(i+Range[0,3])),{i,n}],{n,0,30}]]] (* Harvey P. Dale, Aug 08 2015 *)

Formula

In terms of Vandermonde determinants, a(n) = 1/864*sum {1 <= x_1,x_2,x_3 <= n} (x_1*x_2*x_3)^2*(det V(x_1,x_2,x_3))^2 = 1/864 *sum {1 <= i,j,k <= n} (i*j*k*(i-j)(i-k)(j-k))^2, where V(x_1,x_2,x_3) is the Vandermonde matrix of order 3. a(n) = (n-2)*(n-1)^2*n^3*(n+1)^3*(n+2)^2*(n+3)*(n^2+n+3)*(2n+1)/108864000.
Empirical G.f.: x^3*(x+1)*(x^8+52*x^7+658*x^6+2890*x^5+4810*x^4+2890*x^3+658*x^2+52*x+1)/(x-1)^16. [Colin Barker, Jun 06 2012]