cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A131051 Row sums of triangle A133805.

Original entry on oeis.org

1, 3, 8, 18, 38, 78, 158, 318, 638, 1278, 2558, 5118, 10238, 20478, 40958, 81918, 163838, 327678, 655358, 1310718, 2621438, 5242878, 10485758, 20971518, 41943038, 83886078, 167772158, 335544318, 671088638, 1342177278, 2684354558
Offset: 1

Views

Author

Gary W. Adamson, Sep 23 2007

Keywords

Comments

Last digit of a(n) is 8 for n > 2. - Jon Perry, Nov 19 2012

Examples

			a(4) = 18 = sum of row 4 terms of triangle A133805: (7 + 6 + 4 + 1).
a(4) = 18 = (1, 3, 3, 1), dot (1, 2, 3, 2) = (1 + 6 + 9 + 2).
		

Crossrefs

Essentially a duplicate of A051633.
Cf. A133805.

Programs

  • Magma
    a:=[1]; for n in [2..31] do Append(~a,2*n-2+&+[a[i]:i in [1..n-1]]); end for; a; // Marius A. Burtea, Oct 15 2019
    
  • Magma
    R:=PowerSeriesRing(Integers(), 31); Coefficients(R!( (1+x^2)/((1-x)*(1-2*x)))); // Marius A. Burtea, Oct 15 2019

Formula

Binomial transform of [1, 2, 3, 2, 3, 2, 3, ...].
O.g.f.: (1+x^2)/((1-x)(1-2*x)). a(n)=A051633(n-2). - R. J. Mathar, Jun 13 2008
a(n) = 5*2^(n-2)-2, n>1. - Gary Detlefs, Jun 22 2010
a(n) = 2(n-1) + Sum_{i=1..n-1} a(i). - Jon Perry, Nov 19 2012

Extensions

More terms from R. J. Mathar, Jun 13 2008

A133804 Triangle read by rows: A007318 * A133080 * A133566.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 7, 4, 1, 5, 14, 10, 5, 1, 6, 25, 20, 16, 6, 1, 7, 41, 35, 41, 21, 7, 1, 8, 63, 56, 91, 56, 29, 8, 1, 9, 92, 84, 182, 126, 92, 36, 9, 1, 10, 129, 120, 336, 252, 246, 120, 46, 10, 1, 11, 175, 165, 582, 462, 582, 330, 175, 55, 11, 1, 12, 231, 220, 957, 792, 1254, 792, 550, 220, 67, 12, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 23 2007

Keywords

Comments

Row sums = A133124: (1, 3, 7, 16, 35, 74, 153, ...).
A133805 = binomial transform of (A133566 * A133080).

Examples

			First few rows of the triangle:
  1;
  2,  1;
  3,  3,  1;
  4,  7,  4,  1;
  5, 14, 10,  5,  1;
  6, 25, 20, 16,  6,  1;
  7, 41, 35, 41, 21,  7,  1;
  ...
		

Crossrefs

Formula

Binomial transform of (A133080 * A133566), where A133080 * A133566 = an infinite lower triangular matrix with (1,1,1,...) in the main and subdiagonals and (0,1,0,1,0,...) in the subsubdiagonal.

Extensions

a(21) = 1 inserted and more terms from Georg Fischer, Jun 08 2023
Showing 1-2 of 2 results.