cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A131047 (1/2) * (A007318 - A007318^(-1)).

Original entry on oeis.org

1, 0, 2, 1, 0, 3, 0, 4, 0, 4, 1, 0, 10, 0, 5, 0, 6, 0, 20, 0, 6, 1, 0, 21, 0, 35, 0, 7, 0, 8, 0, 56, 0, 56, 0, 8, 1, 0, 36, 0, 126, 0, 84, 0, 9
Offset: 1

Views

Author

Gary W. Adamson, Jun 12 2007

Keywords

Comments

Row sums = (1, 2, 4, 8, ...). A131047 * (1,2,3, ...) = A087447 starting (1, 4, 10, 24, 56, ...). A generalized set of analogous triangles: (1/(Q+1)) * (P^Q - 1/P), Q an integer, generates triangles with row sums = powers of (Q+1). Cf. A131048, A131049, A131050, A131051 for triangles having Q = 2,3,4 and 5, respectively.
A007318, Pascal's triangle, = this triangle + A119467, since one triangle = the zeros or masks of the other. - Gary W. Adamson, Jun 12 2007

Examples

			First few rows of the triangle:
  1;
  0, 2;
  1, 0,  3;
  0, 4,  0,  4;
  1, 0, 10,  0,  5;
  0, 6,  0, 20,  0, 6;
  1, 0, 21,  0, 35, 0, 7;
  ...
		

Crossrefs

Formula

Let A007318 (Pascal's triangle) = P, then A131047 = (1/2) * (P - 1/P); deleting the right border of zeros.

A051633 a(n) = 5*2^n - 2.

Original entry on oeis.org

3, 8, 18, 38, 78, 158, 318, 638, 1278, 2558, 5118, 10238, 20478, 40958, 81918, 163838, 327678, 655358, 1310718, 2621438, 5242878, 10485758, 20971518, 41943038, 83886078, 167772158, 335544318, 671088638, 1342177278, 2684354558, 5368709118, 10737418238, 21474836478
Offset: 0

Views

Author

Keywords

Examples

			a(5) = 5*2^4 - 2 = 80 - 2 = 78.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -2},{3, 8},30] (* Ray Chandler, Jul 18 2020 *)

Formula

a(n) = A118654(n, 5).
a(n) = A000079(n)*5 - 2 = A020714(n) - 2. - Omar E. Pol, Dec 23 2008
a(n) = 2*(a(n-1)+1) with a(0)=3. - Vincenzo Librandi, Aug 06 2010
a(n) = A123208(2*n+1) = A048487(n)+2 = A131051(n+2) = A153894(n)-1. - Philippe Deléham, Apr 15 2013
G.f.: ( 3-x ) / ( (2*x-1)*(x-1) ). - R. J. Mathar, Mar 23 2023
E.g.f.: exp(x)*(5*exp(x) - 2). - Stefano Spezia, Oct 03 2023

A053209 Row sums of A051598.

Original entry on oeis.org

1, 5, 14, 32, 68, 140, 284, 572, 1148, 2300, 4604, 9212, 18428, 36860, 73724, 147452, 294908, 589820, 1179644, 2359292, 4718588, 9437180, 18874364, 37748732, 75497468, 150994940, 301989884, 603979772, 1207959548, 2415919100
Offset: 0

Views

Author

Asher Auel, Dec 14 1999

Keywords

Crossrefs

Programs

  • Magma
    I:=[5,14]; [1] cat [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 03 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)^2)/((1-x)*(1-2*x))); // Marius A. Burtea, Oct 15 2019
  • Mathematica
    Join[{1}, LinearRecurrence[{3, -2}, {5, 14}, 50]] (* G. C. Greubel, Sep 03 2018 *)
  • PARI
    m=30; v=concat([5,14], vector(m-2)); for(n=3, m, v[n] = 3*v[n-1] -2*v[n-2]); concat([1], v) \\ G. C. Greubel, Sep 03 2018
    

Formula

a(0) = 1, a(1) = 5, a(n+1) = 2*a(n) + 4, for n >= 1.
a(n) = 9*2^(n-1) - 4, n >= 1.
a(n) = 4*n + Sum[i = 0, n - 1] a(i). - Jon Perry, Nov 20 2012
a(n) = A048491(n)/2, n>0. - Philippe Deléham, Apr 15 2013
G.f.: (1+x)^2/((1-x)*(1-2*x)). - Philippe Deléham, Apr 15 2013
a(n) = 3*a(n-1) - 2*a(n-2) with a(0)=1, a(1)=5, a(2)=14. - Philippe Deléham, Apr 15 2013
E.g.f.: (1 - 8*exp(x) + 9*exp(2*x))/2. - Stefano Spezia, Sep 28 2022

A131048 (1/3) * (A007318^2 - A007318^(-1)).

Original entry on oeis.org

1, 1, 2, 3, 3, 3, 5, 12, 6, 4, 11, 25, 30, 10, 5, 21, 66, 75, 60, 15, 6, 43, 147, 231, 175, 105, 21, 7, 85, 344, 588, 616, 350, 168, 28, 8, 171, 765, 1548, 1764, 1386, 630, 252, 36, 9
Offset: 1

Views

Author

Gary W. Adamson, Jun 12 2007

Keywords

Comments

Left border = A001045: (1, 1, 3, 5, 11, 21, 43, 85, ...).
Row sums = (1, 3, 9, 27, ...).
Analogous triangles for other powers of P are: A131047, A131049, A131050 and A131051.

Examples

			First few rows of the triangle:
   1;
   1,   2;
   3,   3,   3;
   5,  12,   6,   4;
  11,  25,  30,  10,   5;
  21,  66,  75,  60,  15,  6;
  43, 147, 231, 175, 105, 21, 7;
  ...
		

Crossrefs

Formula

Let A007318 (Pascal's triangle) = P. then A131048 = (1/3) * (P^2 - 1/P). Delete right border of zeros.
From Peter Bala, Oct 24 2007: (Start)
O.g.f.: 1/(1 - (2*x + 1)*t + (x^2 + x - 2)*t^2) = 1 + (1 + 2*x)*t + (3 + 3*x + 3*x^2)*t^2 + ....
T(n,n-k) = (1/3)*C(n,k)*(2^k - (-1)^k) = C(n,k)*A001045(k).
The row polynomials R(n,x) := Sum_{k = 0..n} T(n,n-k)*x^(n-k) = (1/3)*((x + 2)^n - (x - 1)^n) and have the divisibility property R(n,x) divides R(m,x) in the polynomial ring Z[x] if n divides m.
The polynomials R(n,-x), n >= 2, satisfy a Riemann hypothesis: their zeros lie on the vertical line Re x = 1/2 in the complex plane. Compare with A094440. (End)

A131050 (1/5) * (A007318^4 - A007318^(-1)).

Original entry on oeis.org

1, 3, 2, 13, 9, 3, 51, 52, 18, 4, 205, 255, 130, 30, 5, 819, 1230, 765, 260, 45, 6, 3277, 5733, 4305, 1785, 455, 63, 7, 13107, 26216, 22932, 11480, 3570, 728, 84, 8
Offset: 1

Views

Author

Gary W. Adamson, Jun 12 2007

Keywords

Comments

Row sums = powers of 5: (1, 5, 25, 125, ...).
Left border = A015521: (1, 3, 13, 51, 205, 819, ...).

Examples

			First few rows of the triangle:
    1;
    3,   2;
   13,   9,   3;
   51,  52,  18,  4;
  205, 255, 130, 30, 5;
  ...
		

Crossrefs

Formula

Let P = Pascal's triangle, A007318. Then A131050 = (1/5) * (P^4 - 1/P); deleting the right border of zeros.

A131049 (1/4) * (A007318^3 - A007318^(-1)).

Original entry on oeis.org

1, 2, 2, 7, 6, 3, 20, 28, 12, 4, 61, 100, 70, 20, 5, 182, 366, 300, 140, 30, 6, 547, 1274, 1281, 700, 245, 42, 7, 1640, 4376, 5096, 3416, 1400, 392, 56, 8, 4921, 14760, 19692, 15288, 7686, 2520, 588, 72, 9
Offset: 1

Views

Author

Gary W. Adamson, Jun 12 2007

Keywords

Comments

Row sums = powers of 4: (1, 4, 16, 64, ...).
Left border = A015518: (1, 2, 7, 20, 61, 182, ...).

Examples

			First few rows of the triangle:
    1;
    2,    2;
    7,    6,    3;
   20,   28,   12,   4;
   61,  100,   70,  20,   5;
  182,  366,  300, 140,  30,  6;
  547, 1274, 1281, 700, 245, 42, 7;
  ...
		

Crossrefs

Formula

(1/4) * (P^3 - 1/P), where P = Pascal's triangle, A007318. Delete right border of zeros.

A277215 a(n) is the smallest even number not congruent to 1 modulo 3 that starts a (2n+1)-element alternating sequence of x/2 and (3x+1) iterations ending in the maximum of its Collatz trajectory.

Original entry on oeis.org

0, 26, 6, 14, 30, 1214, 1662, 254, 510, 1022, 2046, 28670, 40958, 180222, 32766, 65534, 131070, 1835006, 5767166, 1048574, 2097150, 4194302, 8388606, 16777214, 33554430, 469762046, 671088638, 268435454, 536870910, 7516192766, 2147483646, 4294967294, 8589934590, 17179869182, 34359738366, 755914244094
Offset: 0

Views

Author

Hartmut F. W. Hoft, Nov 03 2016

Keywords

Comments

a(n) starts a maximal alternating Collatz sequence v_0, ..., v_2n of 2n+1 elements and must have the form v_0 = 2*(q*2^n - 1) where q is the smallest odd number not a multiple of 3 such that v_(2n) = 2*(q*3^n - 1) is the maximum of its Collatz trajectory.
The intermediate elements of the sequence for 1 <= j <= n are v_(2j-1) = q * 2^(n-j+1) * 3^(j-1) - 1, which is odd, and v_(2j) = 2 * (q * 2^(n-j) * 3^j - 1), which is congruent to 2 modulo 4 except for j=n.
A277875(n) is the odd multiplier q in the expression for a(n).
Subsequences of a(n) are related to subsequences of the following sequences depending on the value of q:
a(n) = 2*A000225(n) = A000918(n+1) when A277875(n) = 1;
a(n) = 2*A153894(n) = A131051(n+3) when A277875(n) = 5;
a(n) = 2*A086224(n) = A086224(n+1)-1 = A176448(n+1) when A277875(n) = 7;
a(n) = A086225(n+1)-1 when A277875(n) = 11;
a(n) = A198274(n+1)-1 when A277875(n) = 13;
a(n) = A198276(n+1)-1 when A277875(n) = 19;
For small q > 1, the positions of 2*(q*2^n - 1) among the first 200 numbers in the sequence are:
q = 5: 12, 26, 36, 46, 58, 62, 174;
q = 7: 1, 11, 17, 25, 29, 45, 49, 53, 57, 61, 65, 77, 93, 103, 109, 113, 117, 125, 139, 141, 145, 157, 165, 173, 187, 189, 193;
q = 11: 13, 18, 35, 59, 69, 75, 83, 114, 133, 179;
q = 13: 6, 118;
q = 19: 5;
and among the first 400 numbers are:
q = 17: 222, 229, 230, 268;
(see A277875).
Conjecture: For every n there is an odd number q such that the alternating sequence ends in v_(2n), the maximum of the Collatz trajectory of a(n)=v_0.

Examples

			a(0) = 0 = 2*(1*2^0 - 1) since it is the start and end of the first alternating sequence of 1 element and the maximum of its trajectory.
a(1) = 26 = 2*(7*2^1 - 1) since sequence 26, 13, 40 has 3 elements and ends in the maximum of its trajectory and since 2, 10 and 18 do not satisfy the conditions for a(1).
a(5) = 1214 = 2*(19*2^5 - 1) starts the alternating sequence of 11 elements - 1214, 607, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232 - that ends in the trajectory maximum 9232 while the 11-element alternating sequences starting at 2*(q*2^5 - 1) with odd q<19 either do not end at the trajectory maximum or are congruent to 1 modulo 3 and therefore do not have maximal length.
		

Crossrefs

Programs

  • Mathematica
    collatz[n_] := If[OddQ[n], 3n+1, n/2]
    altdata[low_, high_] := Module[{n, q, notDone, v, a, m, list={}}, For[n=low, n<=high, n++, q=-1; notDone=True; While[notDone, q+=2; v=2*(q*2^n-1); If[Mod[v, 3]!=1, a=NestWhile[collatz, v, Mod[#,4]!=0&]; m=Max[NestWhileList[collatz, a, #!=1&]]; notDone=(a!=m)]]; AppendTo[list, {n, q, v, a}]]; list]/;(low>1)
    a277215[n_]:=Map[#[[3]]&, altdata[2,n]]
    Join[{0,26}, a277215[35]] (* sequence data *)

A134062 Row sums of triangle A134061.

Original entry on oeis.org

1, 8, 18, 38, 78, 158, 318, 638, 1278, 2558, 5118, 10238, 20478, 40958, 81918, 163838, 327678, 655358, 1310718, 2621438, 5242878, 10485758, 20971518, 41943038, 83886078, 167772158, 335544318, 671088638, 1342177278, 2684354558, 5368709118, 10737418238
Offset: 0

Views

Author

Gary W. Adamson, Oct 05 2007

Keywords

Comments

a(n) = bottom term of the matrix-vector product M^n*V, where M = the 3 X 3 matrix [1,0,0; 0,1,0; 1,1,2] and V = [1,1,3].
Binomial transform of (1,7,3,7,3,7,3,...).
Essentially the same as A131051 and A051633. - R. J. Mathar, Mar 28 2012

Examples

			a(2) = 18 = sum of row 2 terms, triangle A134061: (3 + 10 + 5).
a(3) = 38 = (1, 3, 3, 1) dot (1, 7, 3, 7) = (1 + 21 + 9 + 7).
		

Crossrefs

Cf. A134061.

Programs

Formula

For n > 0, a(n) = 5*2^n - 2. - Vaclav Kotesovec, Jan 26 2015
From Colin Barker, Nov 17 2015: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n>2.
G.f.: -(4*x^2-5*x-1) / ((x-1)*(2*x-1)). (End)

Extensions

More terms from Jon E. Schoenfield, Jan 25 2015

A268896 Start at a(0)=1. a(n) = a(n-1)+2 if n == 1,2 (mod 3) and a(n)=a(n-1)+a(n-3) if n == 0 (mod 3).

Original entry on oeis.org

1, 3, 5, 6, 8, 10, 16, 18, 20, 36, 38, 40, 76, 78, 80, 156, 158, 160, 316, 318, 320, 636, 638, 640, 1276, 1278, 1280, 2556, 2558, 2560, 5116, 5118, 5120, 10236, 10238, 10240, 20476, 20478, 20480, 40956, 40958
Offset: 0

Views

Author

Ravesh Sukhram, Feb 27 2016

Keywords

Comments

See Mathematica section for an explicit formula for the n-th term. - Benedict W. J. Irwin, May 30 2016

Programs

  • Mathematica
    Simplify[Table[1/6 (10 (2^n)^(1/3) + 4 (-3 + 5 2^(n/3)) Cos[(2 n Pi)/3] + 5 2^((4 + n)/3)Sin[(n Pi)/3] (Sqrt[3] (-1 + 2^(1/3)) Cos[(n Pi)/3] + (1 + 2^(1/3)) Sin[(n Pi)/3]) - 4 (3 + Sqrt[3] Sin[(2 n Pi)/3])), {n, 0, 20}]] (* Benedict W. J. Irwin, May 30 2016 *)

Formula

G.f.: ( 1+3*x+5*x^2+3*x^3-x^4-5*x^5 ) / ( (x-1)*(2*x^3-1)*(1+x+x^2) ). - R. J. Mathar, Apr 16 2016
a(3n) = A048487(n). a(3n+1) = A131051(n+1). a(3n+2)=A020714(n). - R. J. Mathar, Apr 16 2016

A359312 a(1) = 1; for n >= 1, a(2*n) = A000005(a(n)), a(2*n + 1) = A000005(a(n)) + 1.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2
Offset: 1

Views

Author

Ctibor O. Zizka, Dec 25 2022

Keywords

Examples

			a(1) = 1;
a(2) = A000005(a(1)) = 1;
a(3) = A000005(a(1)) + 1 = 2;
a(4) = A000005(a(2)) = 1;
a(5) = A000005(a(2)) + 1 = 2;
and so on.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = If[EvenQ[n], DivisorSigma[0, a[n/2]], DivisorSigma[0, a[(n - 1)/2]] + 1]; Array[a, 100] (* Amiram Eldar, Dec 25 2022 *)

Formula

Sum_{i = 2^k..2^(k + 1) - 1} a(i) = 5*2^(k - 1) - 2, for k >= 1.
a(2^k) = 1.
Showing 1-10 of 10 results.