cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A118654 Square array T(n,k) read by antidiagonals: T(n,k) = 2^n*Fibonacci(k) - Fibonacci(k-2).

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 3, 2, 1, 1, 7, 4, 3, 2, 1, 15, 8, 7, 5, 3, 1, 31, 16, 15, 11, 8, 5, 1, 63, 32, 31, 23, 18, 13, 8, 1, 127, 64, 63, 47, 38, 29, 21, 13, 1, 255, 128, 127, 95, 78, 61, 47, 34, 21, 1, 511, 256, 255, 191, 158, 125, 99, 76, 55, 34
Offset: 0

Views

Author

Ross La Haye, May 17 2006

Keywords

Comments

Inverse binomial transform (by columns) of A090888.

Examples

			T(2,3) = 7 because 2^2(Fibonacci(3)) - Fibonacci(3-2) = 4*2 - 1 = 7.
{1};
{1,  0};
{1,  1,  1};
{1,  3,  2,  1};
{1,  7,  4,  3,  2};
{1, 15,  8,  7,  5,  3};
{1, 31, 16, 15, 11,  8,  5};
{1, 63, 32, 31, 23, 18, 13,  8};
		

Crossrefs

Rows: T(0,k) = A000045(k-1), for k > 0; T(1,k) = A000045(k+1); T(2,k) = A000032(k+1); T(3,k) = A022097(k); T(4,k) = A022105(k); T(5,k) = A022401(k).
Columns: T(n,1) = A000225(n); T(n,2) = A000079(n); T(n,3) = A000225(n+1); T(n,4) = A055010(n+1); T(n,5) = A051633(n); a(T,6) = A036563(n+3).

Formula

T(n,k) = 2^n*Fibonacci(k) - Fibonacci(k-2).
T(n,k) = (2^n-2)*Fibonacci(k) + Fibonacci(k+1).
T(n,0) = 1; T(n,1) = 2^n - 1; T(n,k) = T(n,k-1) + T(n,k-2), for k > 1.
T(0,k) = Fibonacci(k-1); T(1,k) = Fibonacci(k+1); T(n,k) = 3T(n-1,k) - 2T(n-2,k), for n > 1.
T(n,k) = 2T(n-1,k) + Fibonacci(k-2), for n > 0.
T(n,k) = A109754(2^n-2, k+1) = A101220(2^n-2, 0, k+1), for n > 0.
O.g.f. (by rows) = (1+(-2+2^n)x)/(1-x-x^2).
Sum_{k=0..n} T(n-k,k) = A119587(n+1). - Ross La Haye, May 31 2006

A131051 Row sums of triangle A133805.

Original entry on oeis.org

1, 3, 8, 18, 38, 78, 158, 318, 638, 1278, 2558, 5118, 10238, 20478, 40958, 81918, 163838, 327678, 655358, 1310718, 2621438, 5242878, 10485758, 20971518, 41943038, 83886078, 167772158, 335544318, 671088638, 1342177278, 2684354558
Offset: 1

Views

Author

Gary W. Adamson, Sep 23 2007

Keywords

Comments

Last digit of a(n) is 8 for n > 2. - Jon Perry, Nov 19 2012

Examples

			a(4) = 18 = sum of row 4 terms of triangle A133805: (7 + 6 + 4 + 1).
a(4) = 18 = (1, 3, 3, 1), dot (1, 2, 3, 2) = (1 + 6 + 9 + 2).
		

Crossrefs

Essentially a duplicate of A051633.
Cf. A133805.

Programs

  • Magma
    a:=[1]; for n in [2..31] do Append(~a,2*n-2+&+[a[i]:i in [1..n-1]]); end for; a; // Marius A. Burtea, Oct 15 2019
    
  • Magma
    R:=PowerSeriesRing(Integers(), 31); Coefficients(R!( (1+x^2)/((1-x)*(1-2*x)))); // Marius A. Burtea, Oct 15 2019

Formula

Binomial transform of [1, 2, 3, 2, 3, 2, 3, ...].
O.g.f.: (1+x^2)/((1-x)(1-2*x)). a(n)=A051633(n-2). - R. J. Mathar, Jun 13 2008
a(n) = 5*2^(n-2)-2, n>1. - Gary Detlefs, Jun 22 2010
a(n) = 2(n-1) + Sum_{i=1..n-1} a(i). - Jon Perry, Nov 19 2012

Extensions

More terms from R. J. Mathar, Jun 13 2008

A123208 Start with 1, then alternately add 2 or double.

Original entry on oeis.org

1, 3, 6, 8, 16, 18, 36, 38, 76, 78, 156, 158, 316, 318, 636, 638, 1276, 1278, 2556, 2558, 5116, 5118, 10236, 10238, 20476, 20478, 40956, 40958, 81916, 81918, 163836, 163838, 327676, 327678, 655356, 655358, 1310716, 1310718, 2621436, 2621438, 5242876, 5242878
Offset: 0

Views

Author

Philippe Deléham, Oct 04 2006

Keywords

Examples

			1, 1+2=3, 3*2=6, 6+2=8, 8*2=16, ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x+3*x^2-x^3)/((1-x^2)*(1-2*x^2)))); // Vincenzo Librandi, Jun 25 2013
  • Maple
    a:=proc(n) if n mod 2 = 0 then 5*2^(n/2)-4 else 5*2^((n-1)/2)-2 fi end: seq(a(n),n=0..45); # Emeric Deutsch, Oct 10 2006
  • Mathematica
    nxt[{a_,b_}]:={b+2,2(b+2)}; Rest[Flatten[NestList[nxt,{1,1},20]]] (* or *) LinearRecurrence[{0,3,0,-2},{1,3,6,8},40] (* Harvey P. Dale, Oct 10 2012 *)
    CoefficientList[Series[(1 + 3 x + 3 x^2 - x^3) / ((1 - x) (1 + x) (1 - 2 x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 25 2013 *)

Formula

a(2n) = 5*2^n - 4; a(2n+1) = 5*2^n - 2 (n >= 0). - Emeric Deutsch, Oct 10 2006
From Colin Barker, Sep 10 2012: (Start)
a(n) = 3*a(n-2) - 2*a(n-4).
G.f.: (1+3*x+3*x^2-x^3)/((1-x)*(1+x)*(1-2*x^2)). (End)
a(2n) = A048487(n); a(2n+1) = A051633(n). - Philippe Deléham, Apr 15 2013
E.g.f.: 5*cosh(sqrt(2)*x) - 4*cosh(x) + 5*sinh(sqrt(2)*x)/sqrt(2) - 2*sinh(x). - Stefano Spezia, Oct 03 2023

Extensions

More terms from Emeric Deutsch, Oct 10 2006

A028263 Elements in 3-Pascal triangle A028262 (by row) that are not 1.

Original entry on oeis.org

3, 4, 4, 5, 8, 5, 6, 13, 13, 6, 7, 19, 26, 19, 7, 8, 26, 45, 45, 26, 8, 9, 34, 71, 90, 71, 34, 9, 10, 43, 105, 161, 161, 105, 43, 10, 11, 53, 148, 266, 322, 266, 148, 53, 11, 12, 64, 201, 414, 588, 588, 414, 201, 64, 12, 13, 76, 265, 615, 1002, 1176, 1002, 615, 265, 76, 13
Offset: 0

Views

Author

Keywords

Comments

Rows of triangle formed using Pascal's rule except begin and end n-th row with n+3.

Examples

			The triangle T(n,k) begins
n\k  0  1   2   3    4    5    6   7   8  9 10 ...
0:   3
1:   4  4
2:   5  8   5
3:   6 13  13   6
4:   7 19  26  19    7
5:   8 26  45  45   26    8
6:   9 34  71  90   71   34    9
7:  10 43 105 161  161  105   43  10
8:  11 53 148 266  322  266  148  53  11
9:  12 64 201 414  588  588  414 201  64 12
10: 13 76 265 615 1002 1176 1002 615 265 76 13
... Reformatted. - _Wolfdieter Lang_, Jun 28 2015
		

Crossrefs

Row sums give A051633(n).

Programs

  • Haskell
    a028263 n k = a028263_tabl !! n !! k
    a028263_row n = a028263_tabl !! n
    a028263_tabl = zipWith (zipWith (+)) a007318_tabl a014410_tabl
    -- Reinhard Zumkeller, Mar 12 2012

Formula

T(n,k) = A007318(n,k) + A014410(n+2,k+1). [Reinhard Zumkeller, Mar 12 2012]

Extensions

More terms from James Sellers

A134062 Row sums of triangle A134061.

Original entry on oeis.org

1, 8, 18, 38, 78, 158, 318, 638, 1278, 2558, 5118, 10238, 20478, 40958, 81918, 163838, 327678, 655358, 1310718, 2621438, 5242878, 10485758, 20971518, 41943038, 83886078, 167772158, 335544318, 671088638, 1342177278, 2684354558, 5368709118, 10737418238
Offset: 0

Views

Author

Gary W. Adamson, Oct 05 2007

Keywords

Comments

a(n) = bottom term of the matrix-vector product M^n*V, where M = the 3 X 3 matrix [1,0,0; 0,1,0; 1,1,2] and V = [1,1,3].
Binomial transform of (1,7,3,7,3,7,3,...).
Essentially the same as A131051 and A051633. - R. J. Mathar, Mar 28 2012

Examples

			a(2) = 18 = sum of row 2 terms, triangle A134061: (3 + 10 + 5).
a(3) = 38 = (1, 3, 3, 1) dot (1, 7, 3, 7) = (1 + 21 + 9 + 7).
		

Crossrefs

Cf. A134061.

Programs

Formula

For n > 0, a(n) = 5*2^n - 2. - Vaclav Kotesovec, Jan 26 2015
From Colin Barker, Nov 17 2015: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n>2.
G.f.: -(4*x^2-5*x-1) / ((x-1)*(2*x-1)). (End)

Extensions

More terms from Jon E. Schoenfield, Jan 25 2015

A159290 A generalized Jacobsthal sequence.

Original entry on oeis.org

3, 5, 13, 25, 53, 105, 213, 425, 853, 1705, 3413, 6825, 13653, 27305, 54613, 109225, 218453, 436905, 873813, 1747625, 3495253, 6990505, 13981013, 27962025, 55924053, 111848105, 223696213, 447392425, 894784853, 1789569705, 3579139413
Offset: 0

Views

Author

Creighton Dement, Apr 08 2009

Keywords

Comments

Sequence generated by the floretion: X*Y with X = 0.5('i + 'j + 'k + 'ee') and Y = 0.5(i' + j' + k' + 'ij' + 'ik' + 'ji' + 'jk' + 'ki' + 'kj' + 'ee')

Crossrefs

Programs

  • Magma
    [-1 + (2*(-1)^n + 5*2^(n+1))/3: n in [0..50]]; // G. C. Greubel, Jun 27 2018
  • Mathematica
    LinearRecurrence[{2, 1, -2}, {3, 5, 13}, 50] (* or *) Table[-1 + (2*(-1)^n + 5*2^(n+1))/3, {n,0,30}] (* G. C. Greubel, Jun 27 2018 *)
  • PARI
    x='x+O('x^50); Vec((3-x)/(-x^2+1-2*x+2*x^3)) \\ G. C. Greubel, Jun 27 2018
    

Formula

a(n) = -1 + (2*(-1)^n + 5*2^(n+1))/3.
G.f.: (3-x)/((1-x)*(1+x)*(1-2*x)).
a(n) = 3*A000975(n+1) - A000975(n). - R. J. Mathar, Sep 11 2019
a(n)+a(n+1) = A051633(n+1). - R. J. Mathar, Mar 23 2023

A360692 a(0) = 0. Thereafter a(n+1) = a(a(n)) if a(n) has not occurred previously, otherwise a(n+1) = n - 1 - a(n-1).

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 1, 4, 0, 5, 2, 6, 0, 7, 3, 8, 1, 9, 4, 10, 0, 11, 5, 12, 2, 13, 6, 14, 0, 15, 7, 16, 3, 17, 8, 18, 1, 19, 9, 20, 4, 21, 10, 22, 0, 23, 11, 24, 5, 25, 12, 26, 2, 27, 13, 28, 6, 29, 14, 30, 0, 31, 15, 32, 7, 33, 16, 34, 3, 35, 17, 36, 8
Offset: 0

Views

Author

David James Sycamore, Feb 16 2023

Keywords

Comments

An inductive argument shows that a(n) <= n for all n, with equality iff n = 0. It follows that a(n) is well defined, and the sequence is infinite.
Apart from a(1) = 0 every repeat term is followed by a novel term, and vice versa.
Every nonnegative integer appears infinitely many times.
The proper subsequence given by a(2*k) for k >= 2 is the sequence itself, which is therefore fractal.
Starting from a(1) = 0 the sequence is the nonnegative integers interleaved with itself.

Examples

			a(0) = 0 is a novel term so a(1) = a(a(0)) = 0. Since a(1) is a repeat term a(2) = 0 - a(0) = 0 - 0 = 0. a(1,2) = 0,0 is the only case of consecutive repeat terms.
Since a(2) = 0 is a repeat term, a(3) = 1 - a(1) = 1 - 0 = 1, a novel term so a(4) = a(a(1)) = 0, and so on.
a(16) = 3, a repeat term (last seen at a(7)), so a(17) = 15 - a(15) = 15 - 7 = 8.
		

Crossrefs

Programs

Formula

a(2*n + 1) = n for all n >= 0.
A027383(n) = 0. (n >= 0) gives the positions of all zeros after a(0) = 0.
a((2*k + 3)*2^n - 2) = k (n >= 0) gives the positions of all k > 0.
The number of nonnegative terms occurring between consecutive zeros is 0,0,1,1,3,3,7,7,15,15,... (A000225(n), repeat).
a(n) = A101279(n+2) - 1. - Rémy Sigrist, Feb 18 2023

Extensions

More terms from Rémy Sigrist, Feb 18 2023
Showing 1-7 of 7 results.