A051665 Duplicate of A028263.
3, 4, 4, 5, 8, 5, 6, 13, 13, 6, 7, 19, 26, 19, 7, 8, 26, 45, 45, 26, 8, 9, 34, 71, 90, 71, 34, 9
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The triangle T(n,k) begins: n\k 1 2 3 4 5 6 7 8 9 10 11 2: 2 3: 3 3 4: 4 6 4 5: 5 10 10 5 6: 6 15 20 15 6 7: 7 21 35 35 21 7 8: 8 28 56 70 56 28 8 9: 9 36 84 126 126 84 36 9 10: 10 45 120 210 252 210 120 45 10 11: 11 55 165 330 462 462 330 165 55 11 12: 12 66 220 495 792 924 792 495 220 66 12 ... reformatted. - _Wolfdieter Lang_, May 22 2015
a014410 n k = a014410_tabl !! (n-2) !! (k-1) a014410_row n = a014410_tabl !! (n-2) a014410_tabl = map (init . tail) $ drop 2 a007318_tabl -- Reinhard Zumkeller, Mar 12 2012
for i from 0 to 12 do seq(binomial(i, j)*1^(i-j), j = 1 .. i-1) od; # Zerinvary Lajos, Dec 02 2007
Select[ Flatten[ Table[ Binomial[ n, i ], {n, 0, 13}, {i, 0, n} ] ], #>1& ]
The irregular triangle T(n, k) starts: n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 1: 3 2: 4 4 4 3: 5 6 8 6 5 4: 6 8 13 12 13 8 6 5: 7 10 19 20 26 20 19 10 7 6: 8 12 26 30 45 40 45 30 26 12 8 7: 9 14 34 42 71 70 90 70 71 42 34 14 9 ... T(3, 2) = 6 from the sum of the Pascal triple (1, 2, 3) (from the first down triangle in Pascal's triangle strip S_3). The height ratio H/r for this Pascal triple PT(3, 2) = (1, 2, 3) is (1 + 2 + 3)/3 = T(3, 2)/3 = 2.
tabl(nn) = {for (n=1, nn, for (k=1, 2*n-1, kk = (k+1)\2; if (k%2, v = binomial(n-1, kk-1) + binomial(n, kk-1) + binomial(n, kk), v = binomial(n, kk) + binomial(n-1, kk-1) + binomial(n-1, kk)); print1(v, ", ");); print(););} \\ Michel Marcus, Jun 27 2015
Comments