A133819 Triangle whose rows are sequences of increasing squares: 1; 1,4; 1,4,9; ... .
1, 1, 4, 1, 4, 9, 1, 4, 9, 16, 1, 4, 9, 16, 25, 1, 4, 9, 16, 25, 36, 1, 4, 9, 16, 25, 36, 49, 1, 4, 9, 16, 25, 36, 49, 64, 1, 4, 9, 16, 25, 36, 49, 64, 81, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144
Offset: 1
Examples
The triangle T(n, k) starts: 1; 1, 4; 1, 4, 9; 1, 4, 9, 16; 1, 4, 9, 16, 25;
Links
- Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
- M. de Frenicle, Methode pour trouver la solutions des problemes par les exclusions, in: Divers ouvrages de mathematiques et de physique par messieurs de l'academie royale des sciences, (1693) pp 1-44, page 11. - _Paul Curtz_, Aug 18 2008
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
Programs
-
Haskell
a133819 n k = a133819_tabl !! (n-1) !! (k-1) a133819_row n = a133819_tabl !! (n-1) a133819_tabl = map (`take` (tail a000290_list)) [1..] -- Reinhard Zumkeller, Nov 11 2012
-
Mathematica
With[{sqs=Range[12]^2},Flatten[Table[Take[sqs,n],{n,12}]]] (* Harvey P. Dale, Sep 09 2012 *)
Formula
T(n, k) = k^2, n >= k >= 1. - Wolfdieter Lang, Dec 02 2014
O.g.f.: (1+qx)/((1-x)(1-qx)^3) = 1 + x(1 + 4q) + x^2(1 + 4q + 9q^2) + ... .
a(n) = A000290(m+1), where m = n-t(t+1)/2, t = floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Jan 11 2013
Extensions
Offset changed by Reinhard Zumkeller, Nov 11 2012
Comments