A133820 Triangle whose rows are sequences of increasing cubes: 1; 1,8; 1,8,27; ... .
1, 1, 8, 1, 8, 27, 1, 8, 27, 64, 1, 8, 27, 64, 125, 1, 8, 27, 64, 125, 216, 1, 8, 27, 64, 125, 216, 343, 1, 8, 27, 64, 125, 216, 343, 512, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000
Offset: 1
Examples
Triangle starts 1; 1, 8; 1, 8, 27; 1, 8, 27, 64; 1, 8, 27, 64, 125;
Links
- Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
Programs
-
Haskell
a133820 n k = a133820_tabl !! (n-1) !! (k-1) a133820_row n = a133820_tabl !! (n-1) a133820_tabl = map (`take` (tail a000578_list)) [1..] -- Reinhard Zumkeller, Nov 11 2012
-
Mathematica
Module[{nn=10,c},c=Range[nn]^3;Flatten[Table[Take[c,n],{n,10}]]] (* Harvey P. Dale, Mar 05 2014 *)
Formula
O.g.f.: (1+4qx+q^2x^2)/((1-x)(1-qx)^4) = 1 + x(1 + 8q) + x^2(1 + 8q + 27q^2) + ... .
Extensions
Offset changed by Reinhard Zumkeller, Nov 11 2012
Comments