A133824 Triangle whose rows are sequences of increasing and decreasing fourth powers: 1; 1,16,1; 1,16,81,16,1; ... .
1, 1, 16, 1, 1, 16, 81, 16, 1, 1, 16, 81, 256, 81, 16, 1, 1, 16, 81, 256, 625, 256, 81, 16, 1, 1, 16, 81, 256, 625, 1296, 625, 256, 81, 16, 1, 1, 16, 81, 256, 625, 1296, 2401, 1296, 625, 256, 81, 16, 1, 1, 16, 81, 256, 625, 1296, 2401, 4096, 2401, 1296, 625, 256, 81, 16
Offset: 0
Examples
Triangle starts: 1; 1, 16, 1; 1, 16, 81, 16, 1; 1, 16, 81, 256, 81, 16, 1; ... From _Boris Putievskiy_, Jan 13 2013: (Start) The start of the sequence as table: 1...1...1...1...1.. .1... 1..16..16..16..16...16... 1..16..81..81..81...81... 1..16..81.256.256..256... 1..16..81.256.625..625... 1..16..81.256.625.1296... ... (End)
Links
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
Programs
-
Mathematica
p4[n_]:=Module[{c=Range[n]^4},Join[c,Rest[Reverse[c]]]]; Flatten[p4/@ Range[10]] (* Harvey P. Dale, Dec 08 2014 *)
Formula
O.g.f.: (1+qx)(1+11qx+11q^2x^2+q^3x^3)/((1-x)(1-qx)^4(1-q^2x)) = 1 + x(1 + 16q + q^2) + x^2(1 + 16q + 81q^2 + 16q^3 + q^4) + ... . Cf. 4th row of A008292.
From Boris Putievskiy, Jan 13 2013: (Start)
T(n,k) = min(n,k)^4.
a(n) = (A004737(n))^4.
a(n) = (A124258(n))^2.
a(n) = (floor(sqrt(n-1)) - |n- floor(sqrt(n-1))^2- floor(sqrt(n-1))-1| +1)^4. (End)
Comments